A Right Royal Porphyria Fallacy

To the Editor:

We were intrigued by the cover image for the November 2011 issue of Clinical Chemistry, which showed a cover picture claiming that Mary Queen of Scots had a diagnosis of acute porphyria. The diagnosis of porphyria is usually assigned when a presenting patient is currently symptomatic; the range of indicative symptoms is diverse but relatively well defined. The 3 most common acute porphyrinas are hereditary coproporphyria, variegate porphyria, and acute intermittent porphyria, all inherited as autosomal dominant disorders. Many individuals who inherit the enzyme abnormalities remain asymptomatic through out life. Abdominal pain is the most common symptom of an acute attack, although nausea, vomiting, constipation, neuropathies, and psychiatric symptoms may also accompany the abdominal pain. Hormonal changes, drugs, and nutritional factors may precipitate or aggravate the disorder. The definitive diagnosis relies on a combination of biochemical analyses to define the type of porphyria, followed by molecular analysis that enables screening of potentially affected family members. Occasionally, clinicians encounter patients with vague symptoms and an uncertain family history of porphyria, for which testing of the index case may not be possible. In this scenario of a potentially latent porphyria, results of all screening tests may well be normal and molecular testing is not justified. Many clinicians will adopt a “wait and see” approach, collecting samples at the time of an acute attack if one eventuates.

Owing to the complexity of the porphyrias, a retrospective diagnosis based on clinical observation alone is fraught with problems and would seldom be accepted. Recent research has thrown doubt on the assumption based on historical observation that the English Royals, notably King George III and Mary Queen of Scots, had one of the porphyrias. The array of symptoms attributed to King George III have been presented as meeting the WHO International Classification of Diseases, 10th Revision, criteria for type I bipolar affective disorder with mood-congruent delusions, consistent with previous reports of manic depressive psychosis and with subsequent Alzheimer-type dementia, rather than acute porphyria (1, 2). Evidence generated by the computerized diagnostic aid SimulConsult has also shown that King James VI of Scotland and I of England (the son of Mary Queen of Scots) had features strongly suggestive of attenuated Lesch-Nyhan disease, with mood-congruent delusions, rather than acute porphyria (1–4). Evidence generated by the computerized diagnostic aid SimulConsult has also shown that King James VI of Scotland and I of England (the son of Mary Queen of Scots) had features strongly suggestive of attenuated Lesch-Nyhan disease (3). Furthermore, a review in the Journal of Clinical Pathology (4) suggests that neither King George nor his relatives had porphyria, a conclusion based on rarity, penetrance, symptoms, and natural history.

Although all of these reports come from a single group, we believe that the evidence base underpinning the assertion that Mary Queen of Scots had porphyria is not robust and potentially perpetuates a myth.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

References


Christiaan W. Sies*
Christopher Michael Florkowski
Linda S. Pike

Clinical Biochemistry Unit
Canterbury Health Laboratories
Christchurch, New Zealand

* Address correspondence to this author at
Canterbury Health Laboratories
P.O. Box 151
Christchurch, New Zealand 3006
Fax 643-03-3640320
E-mail chris.sies@cdhb.govt.nz

Previously published online at DOI: 10.1373/clinchem.2011.181552

Copyright (C) 2012 by The American Association for Clinical Chemistry