Estimating Glomerular Filtration Rates by Use of Both Cystatin C and Standardized Serum Creatinine Avoids Ethnicity Coefficients in Asian Patients with Chronic Kidney Disease

Boon Wee Teo,1* Hui Xu,1 Danhua Wang,1,2 Jialiang Li,2 Arvind Kumar Sinha,3 Borys Shuter,4 Sunil Sethi,5 and Evan J.C. Lee1

BACKGROUND: The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation is most accurate for estimating glomerular filtration rate (GFR) but requires an adjustment for African-American patients. Estimation equations are also improved with the use of serum cystatin C combined with standardized creatinine. Combination equations have been derived by the CKD-EPI and Chinese investigators. We investigated whether these cystatin C–based equations improve estimation adequately, so that adjustments for ethnicity are not required in a multiethnic Asian population with chronic kidney disease (CKD).

METHODS: This was a cross-sectional study of 232 stable CKD patients who underwent GFR measurements using 3-sample plasma clearances of 99mTc-DTPA, and for whom serum cystatin C and creatinine were quantified.

RESULTS: For all patients, the median biases with cystatin C equations were generally greater than with the CKD-EPI equation, and precision and root mean square error (RMSE) were not significantly better. However, the combination serum creatinine and cystatin C equation improved the precision, RMSE, and percentage of estimated GFR to within 15% and 30% of the measured GFR (57.3% vs 50.0%, 88.4% vs 82.8%, respectively). The derived ethnicity coefficients for the combination equation were all >1 (1.009–1.082) but small, suggesting that coefficients are not required. The Chinese-specific equations were more biased and performed more poorly than the CKD-EPI equation.

CONCLUSIONS: The use of a cystatin C and creatinine combination equation for estimating GFR in a multiethnic Asian population with CKD does not require ethnicity coefficients because the derived coefficients are very close to each other.

The equations commonly used for estimating glomerular filtration rate (GFR) are the Modification of Diet in Renal Disease (MDRD) study equation and, more recently, the Chronic Kidney Disease–Epidemiology Collaborative Group (CKD-EPI) equation (1, 2). These equations rely on serum creatinine in combination with the demographic variables age, sex, and ethnicity to determine estimated GFR (eGFR). Because the equations were derived from a US population, they are directly applied to white American patients and adjusted for African-American ethnicity by a coefficient. In practice, using ethnicity-based coefficients is problematic in multiethnic populations and patients of mixed parentage (3). Ethnicity coefficients may be partly affected by true differences in body composition, in particular the amount of muscle mass (4). Coefficients may also be affected by errors in serum creatinine calibration, differences in the constituent populations of the equations, and different reference GFR measurement methods (5). It has been suggested that GFR estimations are improved with serum cystatin C–based equations, either alone or in combination with serum creatinine and other demographic variables (6–8). These equations, however, were not valid.

1 Division of Nephrology, Department of Medicine, *Department of Statistics and Applied Probability, Faculty of Science, †Department of Radiology and ‡Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 2Nuclear Medicine, Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore. *Address correspondence to this author at: Division of Nephrology, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Level 10 NUHS Tower Block, Singapore 119228, Singapore; Fax +65-6799-4112; e-mail mdctbw@nus.edu.sg. Received July 6, 2011; accepted December 2, 2011.
dated in multiethnic Asian CKD populations outside of the original derivation populations, and the question exists whether GFR estimation is improved using cystatin C–based equations so that adjustments for ethnicity are not required. In an earlier study, we determined that GFR estimation with the CKD-EPI equation is more accurate than the MDRD equation in a multiethnic Asian CKD population for a wider GFR range (9). In this study, we compared the accuracy of the CKD-EPI equation to several serum cystatin C–based equations and evaluated derived ethnicity coefficients in a multiethnic Asian population with chronic kidney disease.

METHODS

This was a parallel substudy of the Asian Kidney Disease Study approved by the institution review board. Briefly, we recruited patients with CKD presenting to the outpatient nephrology clinics in the National University Hospital, Singapore. The inclusion criteria were (a) age >21 years, (b) serum creatinine with an estimated or measured GFR (mGFR) (MDRD, Cockcroft–Gault (10), or creatinine clearance) of 10–90 mL/min, (c) stable CKD defined as 2 serum creatinines measured >60 days apart of <20% difference, and (d) the definition of CKD followed the clinical practice guidelines (11, 12). Patients were excluded if they had any of the following: (a) inability to consent, (b) physical conditions that render phlebotomy for blood samples difficult, (c) inability to collect urine samples successfully, (d) acute kidney function deterioration, amputation, edema, pleural effusion or ascites, skeletal muscle atrophy, or any condition that potentially interferes with the accuracy of the measurement of GFR. The patients were recruited consecutively with stratified sampling by 4 ethnic groups (Chinese, Malay, Indian, and other) and further by sex. Participants performed self-directed 24-h urine collections and underwent GFR measurement the next day, with blood and spot urine samples collected at the same time. All samples were processed within 4 h and stored at −80 °C. On completion of the recruitment of patients, stored serum samples were assayed for serum cystatin C concentration.

LABORATORY TESTS

Patients were allowed a light, no-protein breakfast and underwent a GFR determination (British Nuclear Medicine Society guidelines) by 3-sample plasma clearance of 99mTc-DTPA by use of an intravenous bolus of Technescan diethylene triamine pentaacetic acid (DTPA) (Mallinkrodt Medical BV) (13). GFR was calculated by the slope-intercept method, normalized to body surface area, with the result corrected using the Brochner–Mortensen equation (14). Body surface area was calculated using the du Bois equation (15). The measured GFR is comparable to that obtained by urinary clearance of inulin (16–18). Serum creatinine was measured by an enzymatic method and calibrated with materials traceable to standardized creatinine (Siemens Advia), and serum cystatin C (cysC) was measured by particle-enhanced immunonephelometry on the BN Prospeq platform (Dade Behring) in batches in 2009. All assays were performed in a central clinical laboratory accredited by the College of American Pathologists. The mean CV for the 2-year period of 2009–2010 for creatinine was 1.55% for both level 1 and 2 controls (1.27 and 5.92 mg/dL, respectively); range 0.65–2.2%. The accuracy program for creatinine (CAP LN24) had a range of −4.6%–3.9% across 4 programs (goal for total error 10%). The CV for cystatin C results was 5.2%–6.2%. Cystatin C is not a clinical service test and we did not subscribe to an evaluation program, hence we were unable to determine any bias. We standardized serum cystatin C (ScysC) using adjustment equation 2: ScysC = 1.12 × cysC (19).

GFR ESTIMATION

We estimated GFR using the CKD-EPI equation (2):

\[eGFR = 141 \times \min (\frac{Scr}{\kappa}, 1)^{\alpha} \times \max (\frac{Scr}{\kappa}, 1)^{-1.093} \times 0.993^{\text{Age}} \times 1.018 \text{ [if female]}, \]

where Scr is standardized serum creatinine, \(\kappa \) is 0.7 for females and 0.9 for males, \(\alpha \) is −0.329 for females and −0.411 for males, min indicates the minimum of \(\frac{Scr}{\kappa} \) or 1, and max indicates the maximum of \(\frac{Scr}{\kappa} \) or 1. We had shown that this is the most accurate serum creatinine–based GFR-estimating equation for a multiethnic Asian CKD population. We used the serum cystatin C–based GFR estimating equations developed by the same group (CKD Epidemiology Collaboration) for CKD patients (8, 19):

\[eGFR1 = 76.7 \times (\min (-0.105 + 1.13 \times \text{ScysC})^{-1.19}; \]

\[eGFR2 = 127.7 \times (\max (-0.105 + 1.13 \times \text{ScysC})^{-1.17} \times \text{age}^{-0.13} \times 0.91, \text{if female}) \]

\[(\times 1.06, \text{if African-American}); \]

\[eGFR3 = 177.6 \times \text{Scr}^{-0.65} \times (\min (-0.105 + 1.13 \times \text{ScysC})^{-0.57} \times \text{age}^{-0.20} \times 0.82, \text{if female}) \]

\[(\times 1.11, \text{if African-American}); \]

where Scr is standardized serum creatinine and ScysC is standardized serum cystatin C concentration in mg/L (1 mg/L = 74.9 mmol/L). In Chinese patients, we also estimated GFR by the proposed Chinese-specific equations (7):
Multiple Biomarkers to Estimate GFR in Asians

Chinese eGFR4 = 86 × cysC−1.132;
Chinese eGFR5 = 176 × Scr−0.607 × cysC−0.638
× age−0.171 (× 0.85, if female);
Chinese eGFR6 = 169 × Scr−0.608 × cysC−0.63
× age−0.157 (× 0.83, if female).

STATISTICS
We compared the eGFR (CKD-EPI) to the mGFR using the following performance measures. The bias for eGFR was defined as the median difference between estimated and measured GFR (eGFR−mGFR) and precision as the interquartile range of this difference. Accuracy was defined as the percentage of GFR estimates within 15%, 30%, and 50% of the mGFR (P15, P30, and P50). We further assessed bias by examining root mean square error (RMSE). To calculate 95% CIs, we generated 2000 bootstrap samples to obtain the standard errors for accuracy assuming a binomial distribution. These metrics are similar and comparable to those practiced in the literature of the CKD-EPI equation (2). The P30 accuracy performance parameter is recommended by the National Kidney Foundation (NKF) Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines, but this level of accuracy is inadequate for clinical practice. A patient at CKD stage 4 may have an eGFR of 15–30 mL/min/1.73m² with boundaries of 10.5–39 mL/min/1.73m². This may result in inadequate time for preparing for end-stage kidney failure at the lower GFR, and conversely, extremely premature preparations and excessively frequent follow-ups at higher GFR. Therefore, to truly determine if new estimating equations are improvements, we also assessed them using the tighter P15 criterion. We transformed measured GFR and serum creatinine to natural logarithms. To obtain ethnicity coefficients for the equations based on serum creatinin C, we forced all other coefficients to be the same as in the original equations and used our data to calibrate the coefficients for ethnicity (8). We modeled the ratio between mGFR and eGFR against the proposed ethnicity variable with the intercept forced to zero: \(\beta_1 \times (X \text{ or } Y \text{ or } Z) = \text{mGFR/eGFR} \), where \(X = 1 \) if Chinese, \(Y = 1 \) if Malay, and \(Z = 1 \) if Indian or others. Analyses were performed on R (R Foundation for Statistical Computing, http://www.r-project.org).

Results
There were 232 participants with a mean (SD) age of 58.4 (12.8) years, standardized serum creatinine 1.70 (0.9) mg/dL [150 (80) μmol/L], standardized serum cystatin C 1.66 (0.78) mg/L, and mGFR 51.7 (27.5) mL/min/1.73m² (Table 1). Altogether, 160 of 232 patients (69%) had mGFR <60 mL/min/1.73m² (mean 36; SD 14), and 72 of 232 participants (31%) had mGFR >60 mL/min/1.73m² (mean 86; SD 19). There were 94 Chinese, 74 Malays, and 64 Indians and others. The mean mGFR was similar between ethnic groups. Chinese weighed less than Malays [weight difference 8.8 (2.3) kg, \(P < 0.001 \)], and Indians and others [weight difference 5.3 (2.6) kg, \(P = 0.046 \)]. Body mass index was lowest in Chinese and highest in Malays (\(P < 0.001 \)). The standardized serum cystatin C concentration was lowest in Chinese (\(P = 0.05 \)) but was not significantly different between Malay and Indian patients. The distributions of serum creatinine and standardized serum cystatin C with measured GFR are shown in Fig. 1 and Supplemental Fig. 1, which accompanies the online version of this article at http://www.clinchem.org/content/vol58/issue2.

eGFR VS mGFR
Compared to the CKD-EPI equation, the serum cystatin-based equations eGFR2 and eGFR3 had greater bias overall (Table 2). The RMSE and precision of equations eGFR2 and eGFR3 were not better (NS) but improved with eGFR3. P30 accuracy was improved in all equations, and P15 accuracy increased by 7.3%.

PERFORMANCE OF CHINESE-SPECIFIC EQUATIONS
In the Chinese subpopulation, the Chinese-specific equations developed by Ma et al. (7) had greater bias than the CKD-EPI equation (19) and the serum cystatin C–based equations (Table 3). Nonetheless, the performance of the cystatin-based equations improved with the addition of demographic variables and had the best performance in combination with serum creatinine. Compared to the CKD-EPI equation, the cystatin-based equations did not consistently show improvements in all of the accuracy performance parameters; however, P15 and P30 were higher using eGFR3.

PERFORMANCE IN NON-CHINESE POPULATIONS
In the non-Chinese groups, bias was greater using the US cystatin C–based equations (eGFR1, eGFR2, and eGFR3) compared to CKD-EPI (Table 4). Again, performance improved with the addition of demographic variables, with the best performance obtained when combined with serum creatinine. Whereas RMSE was not better than with the CKD-EPI equation, precision was marginally improved with equation eGFR3 in both Malays and Indians and others.

DERIVED ETHNICITY COEFFICIENTS
For all patients, we derived “Asian” coefficients for equations eGFR2 and eGFR3 of 1.077 (95% CI 1.046 – 1.109, \(P < 0.001 \)), and 1.061 (1.032–1.090, \(P < 0.001 \),

Clinical Chemistry 58:2 (2012) 3
respectively. We also derived Chinese coefficients of 1.064 (1.019–1.110, \(P = 0.006 \)) and 1.082 (1.037–1.127, \(P < 0.001 \)) for equations eGFR2 and eGFR3, respectively. We derived Malay coefficients of 1.123 (1.057–1.190, \(P < 0.001 \)) and 1.081 (1.026–1.135, \(P = 0.004 \)) for equations eGFR2 and eGFR3. We derived “Indians and others” coefficients of 1.043 (0.995–1.091, \(P = 0.008 \)) and 1.009 (0.955–1.062, \(p = \text{NS} \)) for equations eGFR2 and eGFR3.

Discussion

Our study shows that the serum cystatin C–based GFR-estimating equations for CKD patients that incorporate demographic variables and/or standardized serum creatinine perform as well as the CKD-EPI equation. The equations having serum cystatin C alone (eGFR1 and eGFR2) are not better than with the CKD-EPI equation. The best performance is obtained using the combination biomarker equation (eGFR3) with demographic variables. The P30 accuracy performance parameter recommended by the NKF KDOQI guidelines is similar between eGFR3 (88.4%) and the CKD-EPI equation (82.8%) and is close to that achieved by other validation studies of the MDRD study equations (12, 20). The P15 accuracy is increased by 7.3% in eGFR3 compared to the CKD-EPI equation. This improvement in accuracy of GFR estimation and, consequently, correctness of CKD staging, while requiring only a spot serum test, is attractive for both clinical care and research.

Table 1. Patient characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All</th>
<th>Chinese</th>
<th>Malay</th>
<th>Indian and others</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (%)</td>
<td>232</td>
<td>94 (41)</td>
<td>74 (31)</td>
<td>64 (28)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>58.4 (12.8)</td>
<td>58.1 (13.5)</td>
<td>59.8 (12.3)</td>
<td>57.3 (12.2)</td>
<td>0.50</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>120 (51.7)</td>
<td>48 (51.1)</td>
<td>38 (51.4)</td>
<td>34 (53.1)</td>
<td>0.97</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.59 (0.09)</td>
<td>1.60 (0.09)</td>
<td>1.58 (0.09)</td>
<td>1.60 (0.10)</td>
<td>0.45</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>70.3 (15.9)</td>
<td>66.1 (14.6)</td>
<td>74.9 (15.2)</td>
<td>71.3 (17.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>27.6 (5.5)</td>
<td>25.7 (4.5)</td>
<td>29.9 (5.3)</td>
<td>27.9 (6.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Standardized serum creatinine, mg/dL</td>
<td>1.70 (1.0)</td>
<td>1.70 (0.9)</td>
<td>1.90 (1.1)</td>
<td>1.60 (1.2)</td>
<td>0.45</td>
</tr>
<tr>
<td>Standardized serum cystatin C, mg/L</td>
<td>1.66 (0.78)</td>
<td>1.57 (0.70)</td>
<td>1.84 (0.86)</td>
<td>1.58 (0.76)</td>
<td>0.049</td>
</tr>
<tr>
<td>Measured GFR, mL/min/1.73m²</td>
<td>51.7 (27.5)</td>
<td>54.2 (28.7)</td>
<td>47.6 (27.1)</td>
<td>52.7 (25.9)</td>
<td>0.30</td>
</tr>
<tr>
<td>CKD-EPI eGFR, mL/min/1.73m²</td>
<td>52.8 (27.5)</td>
<td>52.5 (30.2)</td>
<td>49.2 (30.4)</td>
<td>57.2 (30.5)</td>
<td>0.31</td>
</tr>
<tr>
<td>eGFR1, mL/min/1.73m²</td>
<td>52.9 (31.6)</td>
<td>56.3 (34.6)</td>
<td>46.2 (26.9)</td>
<td>55.56 (31.0)</td>
<td>0.087</td>
</tr>
<tr>
<td>eGFR2, mL/min/1.73m²</td>
<td>50.3 (30.1)</td>
<td>53.3 (32.4)</td>
<td>44.01 (26.1)</td>
<td>52.95 (30.1)</td>
<td>0.095</td>
</tr>
<tr>
<td>eGFR3, mL/min/1.73m²</td>
<td>51.8 (31.6)</td>
<td>53.2 (33.2)</td>
<td>46.1 (28.0)</td>
<td>56.15 (32.6)</td>
<td>0.149</td>
</tr>
<tr>
<td>Chinese eGFR4, mL/min/1.73m²</td>
<td>74.5 (39.1)</td>
<td>74.5 (39.1)</td>
<td>74.5 (39.1)</td>
<td>74.5 (39.1)</td>
<td>74.5 (39.1)</td>
</tr>
<tr>
<td>Chinese eGFR5, mL/min/1.73m²</td>
<td>65.7 (39.9)</td>
<td>65.7 (39.9)</td>
<td>65.7 (39.9)</td>
<td>65.7 (39.9)</td>
<td>65.7 (39.9)</td>
</tr>
<tr>
<td>Chinese eGFR6, mL/min/1.73m²</td>
<td>65.7 (39.3)</td>
<td>65.7 (39.3)</td>
<td>65.7 (39.3)</td>
<td>65.7 (39.3)</td>
<td>65.7 (39.3)</td>
</tr>
</tbody>
</table>

- Data are mean (SD) unless noted otherwise.
- * Chinese < Malay, \(P < 0.001 \); Chinese < Indian and others, \(P = 0.046 \); Malay vs Indian and others, \(P = 0.21 \).
- * Chinese < Malay, \(P < 0.001 \); Chinese < Indian and others, \(P = 0.012 \); Malay > Indian and others, \(P = 0.046 \).
- * Chinese < Malay, \(P = 0.0296 \); Malay vs Indian and others, \(P = 0.0588 \); Chinese vs Indian and others, \(P = 0.937 \).
A consistent, >10% bias between measured and estimated GFR, it would be difficult to attribute derived ethnicity coefficients to true ethnic differences in GFR (9). This is because the bias may be a result of differences arising from the constituting derivation population, biomarker assay calibration, GFR measurement method, and physiologic variability. A study population with more high-GFR patients can be expected to have greater variability and differences in measured GFR. Therefore, ethnicity coefficients may arise due to chance, particularly if the study population is small. Serum creatinine calibration is an important source of bias and may be the cause of the ethnicity coefficient (9, 21, 22). Physiologic variability and different GFR measurement techniques may result in up to

![Fig. 1. Distribution of serum creatinine and cystatin C with measured GFR.](A), serum creatinine; (B), serum cystatin C. ○, male; ●, female.

Table 2. Comparison of the accuracy of the equations to measured GFR in all patients (n = 232).

<table>
<thead>
<tr>
<th>Equation</th>
<th>Bias, mL/min/1.73m² (95% CI)</th>
<th>Precision, mL/min/1.73m² (95% CI)</th>
<th>RMSE (95% CI)</th>
<th>Accuracy, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR1 (ScysC)</td>
<td>-0.44 (-2.26 to 1.38)</td>
<td>11.75 (9.68 to 13.82)</td>
<td>15.19 (11.64 to 18.74)</td>
<td>50.43 (43.9 to 57.0)</td>
</tr>
<tr>
<td>eGFR2 (ScysC + age + sex + ethnicity)</td>
<td>-2.73 (-3.9 to -1.5)</td>
<td>10.59 (8.6 to 12.6)</td>
<td>14.31 (11.1 to 17.5)</td>
<td>51.72 (45.3 to 58.2)</td>
</tr>
<tr>
<td>eGFR3 (Sc + ScysC + age + sex + ethnicity)</td>
<td>-1.18 (-2.7 to -0.3)</td>
<td>10.39 (8.1 to 12.6)</td>
<td>13.16 (10.7 to 16.5)</td>
<td>57.3 (50.3 to 64.9)</td>
</tr>
<tr>
<td>CKD-EPI eGFR (Scr + age + sex + ethnicity)</td>
<td>-1.12 (-2.7 to 0.3)</td>
<td>12.11 (9.0 to 15.1)</td>
<td>13.8 (11.3 to 16.4)</td>
<td>96.6 (94.2 to 98.9)</td>
</tr>
</tbody>
</table>

a Scr, standardized serum creatinine.
20% differences (13, 17, 23). We previously showed that varying the protocol for the calculation of GFR measurements by the slope-intercept method reduced a derived Chinese coefficient for the MDRD study equation by 2% (9). Moreover, with the exception of the Indian and others group, equation eGFR3 yielded ethnicity coefficients for the Malay and Chinese groups that were marginally higher than 1 within their 95% CIs, further supporting the idea that ethnicity adjustment is not required for the combination biomarker equation in multiethnic Asian populations. It is unlikely that a large, representative, economical study will be performed to develop “true” ethnicity coefficients. Like other studies, our ethnicity coefficients were derived mathematically (9, 21, 24). The proliferation of such coefficients will not be practical or practicable in many cosmopolitan cities and countries. Our study is the first to suggest that a multiple biomarker approach to GFR-estimating equations may obviate ethnicity coefficients because the adjustment quanta are small. Therefore, in the absence of external validation, we do not recommend the use of our derived ethnicity coefficients. Our study results do suggest that equation eGFR3, however, can be used without considering ethnicity coefficients in Asians with CKD both within and outside the US.

In the Chinese subgroup, the Chinese-specific equations also showed improved performance when demographic variables were added (7). The bias and other accuracy parameters, however, were poorer than with the serum cystatin C–based equations derived from the US population. In fact, the straight application of the combination biomarkers equation (eGFR3) performed very well, yielding GFR estimates with similar or better precision and accuracy (P15 and P30). One possible reason is that our laboratory had the advantage of calibrating our serum creatinine assays to standardized serum creatinine and reducing assay variability with an enzymatic method, thereby obviating one source of bias. Although there is concern that serum cystatin C is a potential source of bias or measurement error, the risk is lower since we used the same assay type as in the previous study and calibrated the nephelometer with manufacturer-provided calibrators (7, 8, 25). Nonetheless, recent studies suggest that the Siemens assay (Dade Behring) has changed over time (26, 27). We note that the CKD-EPI cystatin C study assayed serum cystatin C from frozen samples in 2005–2006 (8). Therefore, bias and any derived coefficients in this study may be caused by this elapsed time. Moreover, our cystatin C assays also were performed before the availability (June 2010) of an international cystatin C reference material (ERM-DA471/IFCC). Fortunately, the timing of our study assays (2009) permits us to mathematically adjust our serum cystatin C results to standardized cystatin C (19).

Our data also suggests that in multiethnic CKD populations, it would be possible to increase precision and percentage accuracy to within 15% and 30% of the mea-
Table 4. Performance of equations in non-Chinese CKD patients.

<table>
<thead>
<tr>
<th>Bias, MLA/m/min/1.73m² (95% CI)</th>
<th>Accuracy (%) (95% CI)</th>
<th>RMSE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR1 (ScysC)</td>
<td>1.19 (0.9–3.3)</td>
<td>12.4 (7.6–17.2)</td>
</tr>
<tr>
<td>eGFR2 (ScysC)</td>
<td>0.9 (1.9–2.8)</td>
<td>11.6 (7.5–15.8)</td>
</tr>
<tr>
<td>eGFR3 (ScysC)</td>
<td>0.2 (1.7–2.0)</td>
<td>14.3 (7.6–20.9)</td>
</tr>
<tr>
<td>CKD-EPI GFR (Scr)</td>
<td>1.2 (1.2–4.4)</td>
<td>17.7 (10.9–24.5)</td>
</tr>
<tr>
<td>Indian and others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR1 (ScysC)</td>
<td>0.9 (1.9–2.8)</td>
<td>11.6 (7.5–15.8)</td>
</tr>
<tr>
<td>eGFR2 (ScysC)</td>
<td>0.2 (1.7–2.0)</td>
<td>14.3 (7.6–20.9)</td>
</tr>
<tr>
<td>eGFR3 (ScysC)</td>
<td>1.2 (1.2–4.4)</td>
<td>17.7 (10.9–24.5)</td>
</tr>
<tr>
<td>CKD-EPI GFR (Scr)</td>
<td>1.5 (1.1–20.7)</td>
<td>15.9 (11.1–20.7)</td>
</tr>
<tr>
<td>eGFR1 (ScysC)</td>
<td>0.9 (1.9–2.8)</td>
<td>11.6 (7.5–15.8)</td>
</tr>
<tr>
<td>eGFR2 (ScysC)</td>
<td>0.2 (1.7–2.0)</td>
<td>14.3 (7.6–20.9)</td>
</tr>
<tr>
<td>eGFR3 (ScysC)</td>
<td>1.2 (1.2–4.4)</td>
<td>17.7 (10.9–24.5)</td>
</tr>
<tr>
<td>CKD-EPI GFR (Scr)</td>
<td>1.7 (1.2–4.4)</td>
<td>17.7 (10.9–24.5)</td>
</tr>
</tbody>
</table>

In summary, our study shows that a combined serum cystatin C and standardized creatinine GFR-estimating equation performs similarly to the CKD-EPI equation. In multiethnic Asian CKD populations, it is reasonable to use this equation without adjustments for ethnicity.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting
or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the Disclosures of Potential Conflict of Interest form. Potential conflicts of interest:

Employment or Leadership: B. Shuter, Senior Lecturer, National University of Singapore.

Consultant or Advisory Role: None declared.

Stock Ownership: None declared.

Honorary: None declared.

Research Funding: The Asian Kidney Disease Study was funded in part by the National Medical Research Council (block vote) and the National Kidney Foundation of Singapore. Funding by the Ministry of Education Academic Research Fund awarded by the National University of Singapore Yong Loo Lin School of Medicine Faculty Research Committee to B. Wee Teo, as principal investigator, and E. Lee, S. Sethi, J. Li, B. Shuter, and A.K. Sinha, coinvestigators. B. Wee Teo, the National Healthcare Group-National University of Singapore Clinical Leadership in Research Award 2007 and the National Medical Research Council Overseas Fellowship Award 2009 for research studies in kidney function.

Expert Testimony: None declared.

Role of Sponsor: The funding organizations played no role in the design of study, choice of enrolled patients, review and interpretation of data, or preparation or approval of manuscript.

Acknowledgments: Statistical support during revision of the manuscript was provided by Yun Yin Koh.

References

