Relationship between Serum Testosterone and Fracture Risk in Men: A Comparison of RIA and LC-MS/MS

Thach S. Tran,1 Jacqueline R. Center,1,2 Markus J. Seibel,3 John A. Eisman,1,2,4,5 Mark M. Kushnir,6 Alan L. Rockwood,6 and Tuan V. Nguyen1,7,8*

BACKGROUND: Serum testosterone can be measured by LC-MS/MS and RIA. We investigated whether the testosterone–fracture relationship was affected by the method of measurement.

METHODS: We measured total testosterone (TT) by LC-MS/MS (TTLC-MS/MS) and RIA (TTRIA) in serum samples collected from 602 men whose incident fractures had been continuously ascertained by x-ray reports from 1989 to 2010. We measured bone mineral density (BMD) by dual-energy x-ray absorptiometry. The association between TT and fracture risk was assessed by the Cox proportional hazards model, taking into account the effect of age and BMD.

RESULTS: Mean TTLC-MS/MS was higher than TTRIA by 27 ng/dL (95% CI 13–41). The concordance correlation coefficient between TTLC-MS/MS and TTRIA was 0.72 (95% CI 0.68 – 0.76). The Deming regression equation linking the 2 measurements was \[\ln\left(\frac{TT_{LC-MS/MS}}{10}\right) = 0.87 + 0.87 \ln\left(\frac{TTRIA}{10}\right). \] The hazard ratio of fracture per SD decrease in TT was 1.32 (95% CI 1.12–1.54) for TTLC-MS/MS and 1.23 (1.06 –1.43) for TTRIA. The correlation between predicted probabilities of fracture by TTLC-MS/MS and TTRIA was \(r = 0.96 \), with the mean difference being 0.01% (95% CI −6.1% to 6.2%). Slightly more patients were classified as having hypogonadism if TTRIA was used (29% vs 26%).

CONCLUSIONS: The concordance between LC-MS/MS and RIA in the measurement of serum TT was moderate. Moreover, the magnitude of association between testosterone and fracture risk in older men was largely unaffected by the method of measurement.

© 2015 American Association for Clinical Chemistry

Measurement of testosterone is commonly used in the diagnosis of androgen deficiency and epidemiologic studies of association. It has been recommended that a serum total testosterone (TT)9 concentration <300 ng/dL (equivalent to 10.4 nmol/L) is considered hypogonadal (1). Recent epidemiologic studies have suggested that hypogonadal concentrations of TT are associated with an increased risk of fragility fracture (2, 3). In older men from the Dubbo Study, after adjustment for major risk factors, the risk of fracture was increased by 37% for every 199 ng/dL (6.9 nmol/L) decrease in TT concentrations (3).

Serum testosterone can be measured by LC-MS/MS and by immunoassay, including RIA, chemiluminescent immunoassay, and enzyme-linked immunosorbent assay. Because of its lower cost and higher throughput, RIA has been widely used in research and routine clinical practice. However, the imprecision and accuracy of direct RIAs are usually suboptimal, in particular for measurements of low concentrations, which are clinically relevant (i.e., in women, children, and hypogonadal men) (4). The correlation between RIA and LC-MS/MS for measuring testosterone concentrations is high, with the coefficient of correlation being >0.9 (4–8). However, discordance between commercial immunoassays and mass spectrometry has been reported to be ≤5-fold at TT concentrations of ≤230 ng/dL (7). Correlation is a population-level measure, not necessarily applicable to an individual. Thus it is not clear whether such a high...
correlation could translate into an accurate classification of hypogonadism for an individual.

From an epidemiologic point of view, measurements of TT by RIA methods are preferable given their relatively lower cost and faster throughput. Nevertheless, no data directly compare the ability of TT concentration to predict future fracture risk as measured by RIA vs LC-MS/MS. This study was designed to determine whether the fracture–testosterone relationship was affected by the method of measurement at the population and individual levels.

Materials and Methods

SETTING AND PARTICIPANTS
The study was part of the ongoing Dubbo Osteoporosis Epidemiology Study, for which study design and protocols have been described in detail previously (3). Briefly, through the electoral roll and via media campaign, all men and women ≥60 years old as of June 30, 1989, living in Dubbo (a regional city of 32000 predominantly white people in New South Wales, Australia) were invited to participate in the study. The age and sex distribution of the Dubbo population closely resembled that of the general Australian population. The study was approved by St Vincent’s Hospital Ethics Review Committee, Sydney. Written informed consent was obtained from all participants.

DATA COLLECTION
A nurse coordinator interviewed participants by administering a structured questionnaire to obtain anthropometric variables and other data including age, history of fracture after 50 years of age, history of falls in the preceding 12 months, lifestyle factors, and calcium intake. Bone mineral density (BMD) was measured at the lumbar spine and femoral neck by dual-energy x-ray absorptiometry (Lunar DPX-L; GE-Lunar). The same densitometer was used throughout the study, and the CV for the BMD measurements was 1.3% and 5.3% at the lumbar spine and femoral neck, respectively.

Incident fractures were continuously ascertained from 1989 to 2010 by review of x-ray reports from all 3 radiological services for the entire Dubbo area. A study coordinator determined the circumstances surrounding each fracture by phone call after each fracture. The analysis included only low-trauma and nonpathologic fractures with a definite report of fracture. Fractures were excluded from the analysis if they had clearly resulted from major trauma (motor vehicle accidents) or underlying diseases (cancer or Paget disease) or were fractures of digits, skull, or cervical spine.

LABORATORY MEASUREMENTS
We measured TT concentrations by LC-MS/MS (TT\textsubscript{LC-MS/MS}) and RIA (TT\textsubscript{RIA}) in 602 (69.4%) of the 868 men who had been participating by July 2004 and were followed up at biennial intervals. Men with and without a serum sample (n = 259) were comparable with regard to baseline characteristics, such as age, weight, height, and BMD.

Most participants had nonfasting blood samples collected in the morning in plain tubes, which were centrifuged at 14000g. Serum samples were removed and stored in 2-mL Eppendorf tubes at −80°C until analysis. Serum TT concentrations were measured by LC-MS/MS (9) at ARUP Laboratories. The same samples were also measured by a commercial RIA (Delfia; PerkinElmer, Wallac Oy) at the Bone Biology Laboratory, ANZAC Research Institute, Sydney. The limit of quantification and method imprecision for TT were 3.0 ng/dL and <10% (LC-MS/MS) and 8.6 ng/dL and 6.8% (RIA), respectively. Intraassay CVs were 5.6% and 4.5% for LC-MS/MS and RIA, respectively.

Serum concentrations of sex hormone–binding globulin (SHBG) were determined by RIA (Delfia) at the Bone Biology Laboratory, ANZAC Research Institute, Sydney, with CVs of 10.2%, 5.3%, and 8.3% at high (14.6 μg/mL), mid-range (6.4 μg/mL), and low (2.2 μg/mL) concentrations, respectively. Estradiol concentrations were measured by LC-MS/MS (10) at ARUP Laboratories. The limit of quantification for estradiol was 1.5 pg/mL (5.5 pmol/L), and method imprecision was <10%.

STATISTICAL METHODS
We determined the extent of between-method agreement in TT by comparing the measured values of TT obtained by RIA with those obtained by LC-MS/MS as evaluated by Deming regression (11) and Bland–Altman plot (12). We used the κ correlation coefficient (13) to quantify the concordance in clinical diagnosis of male hypogonadism, with a threshold of 300 ng/dL (10.4 nmol/L) (1).

We used the Cox proportional hazards model to assess the association between TT and fracture risk. In this method, the time to fracture was the outcome, and measurements of TT were predictors. Two independent models were considered: (a) fracture as a function of TT\textsubscript{RIA} and (b) fracture as a function of TT\textsubscript{LC-MS/MS}. In each model, we assessed the magnitude of association by the hazard ratio and 95% CI per SD decrease in TT concentration. The hazard ratio was further adjusted for known risk factors, such as age, body weight, femoral neck BMD, prior fracture, dietary calcium intake, SHBG concentration, and smoking status. Femoral neck BMD was considered in the model because it was less likely than lumbar spine BMD to be affected by degenerative changes. Because the distributions of testosterone conc-
centrations, SHBG, estradiol, and dietary calcium intake were skewed, we applied a natural logarithmic (ln) transformation of observed values with the formula: \(\ln(x + c) \), where \(x \) is the original value and \(c \) is a normalized constant. A correlation of the predicted probability of fracture obtained from the 2 predictive models was determined. All statistical analyses were performed with the R statistical environment on a Windows platform (14).

Results

BETWEEN-METHOD AGREEMENT OF RIA AND LC-MS/MS MEASUREMENTS

We evaluated data from 602 men aged 73 (6) years [mean (SD)] whose serum TT concentrations were measured by both RIA and LC-MS/MS (Table 1). Approximately 66% of men were age ≥70. TT concentrations were weakly correlated with serum estradiol (Pearson correlation coefficient 0.45 for TT_{LC-MS/MS} and 0.35 for TT_{RIA}) and SHBG (0.35 for TT_{LC-MS/MS} and 0.36 for TT_{RIA}). Serum TT_{LC-MS/MS} and TT_{RIA} were 430 (206) ng/dL [14.9 (7.1) nmol/L] and 403 (196) ng/dL [14 (6.8) nmol/L], respectively. The median (interquartile range) of serum TT_{LC-MS/MS} was 398 (296 to 555) ng/dL [13.8 (10.3–19.2) nmol/L], and of serum TT_{RIA}, 386 (280 to 525) ng/dL [13.4 (9.7–18.2) nmol/L]. Mean TT_{RIA} was lower than that of TT_{LC-MS/MS} by 27 ng/dL [0.9 nmol/L] [95% CI 13–41, \(P \) (paired \(t \)-test) = 0.0002]. The concordance correlation coefficient between the 2 methods of measurement was 0.72 (95% CI 0.68–0.76). There was no evidence that the between-method difference was systematically related to the means (Fig. 1). The Deming regression equation describing the relationship between TT concentration measured by LC-MS/MS and RIA was \(\ln(\text{TT}_{LC-MS/MS}) = 0.87 + 0.87 \times \ln(\text{TT}_{RIA}) + 10 \). This equation suggested that the RIA method overestimated TT concentrations by 13% compared with the LC-MS/MS method (\(R^2 = 0.54 \)). Free testosterone concentrations were estimated from TT and SHBG concentrations with the empirical algorithm proposed by Sartorius et al. (15). Free testosterone calculated from TT_{RIA} was lower than that calculated from TT_{LC-MS/MS} by 0.35 ng/dL [95% CI 0.17–0.53, \(P \) (paired \(t \)-test) = 0.0002].

Table 1. Baseline characteristics of 602 participants in the study.a

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>72.59 (5.68)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>78.35 (12.93)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>172.37 (6.32)</td>
</tr>
<tr>
<td>Body mass index, kg/m(^2)</td>
<td>26.34 (3.79)</td>
</tr>
<tr>
<td>Dietary calcium, mg/day</td>
<td>635.62 (342.24)</td>
</tr>
<tr>
<td>Past or present smoker</td>
<td>356 (59.14)</td>
</tr>
<tr>
<td>Lumbar spine BMD, g/cm(^2)</td>
<td>1.26 (0.22)</td>
</tr>
<tr>
<td>Lumbar spine T-score</td>
<td>0.48 (1.87)</td>
</tr>
<tr>
<td>Femoral neck BMD, g/cm(^2)</td>
<td>0.91 (0.15)</td>
</tr>
<tr>
<td>Femoral neck T-score</td>
<td>-1.08 (1.28)</td>
</tr>
<tr>
<td>Serum TT measured by LC-MS/MS</td>
<td>430.17 (206.18) ng/dL 14.93 (7.15) nmol/L</td>
</tr>
<tr>
<td>Serum free testosterone calculated from TT_{LC-MS/MS} ng/dLb</td>
<td>5.91 (2.53) ng/dL 0.20 (0.09) nmol/L</td>
</tr>
<tr>
<td>Serum TT measured by RIA, ng/dL</td>
<td>403.01 (195.53) ng/dL 13.98 (6.78) nmol/L</td>
</tr>
<tr>
<td>Serum free testosterone calculated from TT_{RIA}, ng/dLb</td>
<td>5.55 (2.45) ng/dL 0.19 (0.08) nmol/L</td>
</tr>
<tr>
<td>Serum estradiol</td>
<td>20.27 (9.32) pg/mL</td>
</tr>
<tr>
<td>Serum SHBG</td>
<td>74.41 (34.21) pmol/L</td>
</tr>
<tr>
<td>(\mu)g/mL</td>
<td>5.35 (2.30)</td>
</tr>
<tr>
<td>(nmol/L)</td>
<td>47.59 (20.46)</td>
</tr>
<tr>
<td>Previous fracture</td>
<td>112 (18.60)</td>
</tr>
</tbody>
</table>

* Data are mean (SD) or n (%).
* Free testosterone (pmol/L) = 24.00314 × TT/log10 SHBG − 0.04599 × TT² [Sartorius et al. (15)].

DIAGNOSTIC CONCORDANCE AT THE INDIVIDUAL LEVEL

With the criterion of TT ≤300 ng/dL (10.4 nmol/L), 156 men (26%) were classified as testosterone deficient by LC-MS/MS (Table 2). With the same criterion, the prevalence of testosterone deficiency was 29% (n = 176) by RIA. However, the concordance in the diagnosis between 2 methods of measurement was modest, with a \(\phi \) coefficient of 0.55 and \(\kappa \) statistic of 0.57 (95% CI 0.47–0.62). Among 156 men with testosterone deficiency by TT_{LC-MS/MS}, 45 (28.8%) were classified as eugonadal by TT_{RIA}. On the other hand, of the 446 men classified as eugonadal by TT_{LC-MS/MS}, 65 (14.6%) were considered testosterone deficient by TT_{RIA}. Slightly more patients were classified as low testosterone if TT_{RIA} was used, regardless of the serum testosterone thresholds (Fig. 2).

CONCORDANCE IN THE MAGNITUDE OF THE ASSOCIATION BETWEEN TT CONCENTRATION AND FRACTURE

During the median 7.8 years of follow-up, 112 men sustained a fragility fracture. The incidence of fracture was
Fig. 1. TT measurement comparison between RIA and LC-MS/MS.
(A), Concordance correlation coefficient between TT_{RIA} concentration (x axis) and TT_{LC-MS/MS} concentration (y axis). (B), Bland–Altman plot of the mean ln(TT concentration) of the 2 methods (x axis) and percentage difference in ln(TT concentration) (y axis).
3.4 per 100 person-years (95% CI 3.3–3.5). Most fractures occurred at the hip (26%), vertebrae (44%), and nonvertebrae (81%). Men with fracture had a lower baseline TT concentration than those without a fracture, measured by either LC-MS/MS [mean difference 35 ng/dL (1.2 nmol/L); 95% CI 7 to 77] or RIA [mean difference 45 ng/dL (1.6 nmol/L); 95% CI 5–85]. The hazard ratio of fracture per SD lower TT concentration was 1.23 (95% CI 1.06–1.43) by RIA and 1.41 (1.19–1.64) by LC-MS/MS. The association between TT and fracture risk remained statistically significant after adjusting for SHBG, age, BMD, weight, and lifestyle factors (Table 3). Similarly, every SD lower in calculated free testosterone concentration, computed from TTLC-MS/MS and TTRIA, was associated with a 25% and 22% increase in fracture risk, respectively (see Supplemental Table 1, which accompanies the online version of this article at http://www.clinchem.org/content/vol61/issue9).

On the basis of the association between TT and fracture, we estimated the probabilities of any fracture, hip fracture, vertebral fracture, and nonvertebral fracture with TTRIA (denoted by \(P_{\text{RIA}} \)) and TTLC-MS/MS (\(P_{\text{LC-MS/MS}} \)). Fig. 3 shows the correlation between \(P_{\text{RIA}} \) and \(P_{\text{LC-MS/MS}} \). For each fracture site, the coefficient of correlation between \(P_{\text{RIA}} \) and \(P_{\text{LC-MS/MS}} \) was consistently >0.96, and the mean difference in the predicted probability of fracture was 0.01% (95% CI –6.1% to 6.2%) for any fracture.

Discussion

Accurate measurement of serum testosterone concentrations is essential for the diagnosis and management of male hypogonadism (1). In this study, we used TT as a

Table 2. Concordance in the diagnosis of hypogonadism between LC-MS/MS and RIA methods.\(^a\)

<table>
<thead>
<tr>
<th>Method</th>
<th>Actual TT<sub>LC-MS/MS</sub> ≤300 ng/dL</th>
<th>Actual TT<sub>LC-MS/MS</sub> >300 ng/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual TT<sub>RIA</sub> ≤300 ng/dL</td>
<td>111 (0.71)(^a)</td>
<td>65 (0.15)</td>
</tr>
<tr>
<td>Actual TT<sub>RIA</sub> >300 ng/dL</td>
<td>45 (0.29)</td>
<td>381 (0.85)</td>
</tr>
<tr>
<td>Predicted TT<sub>LC-MS/MS</sub> ≤300 ng/dL</td>
<td>96 (0.61)(^b)</td>
<td>34 (0.08)</td>
</tr>
<tr>
<td>Predicted TT<sub>LC-MS/MS</sub> >300 ng/dL</td>
<td>60 (0.39)</td>
<td>412 (0.92)</td>
</tr>
</tbody>
</table>

\(^a\) Data are n (%).

\(^b\) Predicted TT_{LC-MS/MS} was estimated by Deming equation: \(\ln(\text{TT}_{\text{LC-MS/MS}} + 10) = 0.87 + 0.87 \times \ln(\text{TT}_{\text{RIA}} + 10) \).
Fracture Risk and Testosterone Measurement Methods

Table 3. Association between TT and fracture risk: analysis for TT_{LC-MS/MS} and TT_{RIA}.

<table>
<thead>
<tr>
<th></th>
<th>TT_{LC-MS/MS}</th>
<th></th>
<th></th>
<th>TT_{RIA}</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard ratio (95% CI)*</td>
<td>P</td>
<td></td>
<td>Hazard ratio (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>Unadjusted</td>
<td>1.41 (1.19-1.64)</td>
<td><0.001</td>
<td></td>
<td>1.23 (1.06-1.43)</td>
<td>0.006</td>
</tr>
<tr>
<td>Adjusted for SHBG</td>
<td>1.43 (1.23-1.67)</td>
<td><0.001</td>
<td></td>
<td>1.37 (1.20-1.54)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for SHBG and age</td>
<td>1.28 (1.10-1.49)</td>
<td>0.002</td>
<td></td>
<td>1.12 (0.98-1.30)</td>
<td>0.1</td>
</tr>
<tr>
<td>Adjusted for SHBG, age, and weight</td>
<td>1.30 (1.11-1.52)</td>
<td>0.001</td>
<td></td>
<td>1.18 (1.02-1.37)</td>
<td>0.02</td>
</tr>
<tr>
<td>Adjusted for age, BMD, SHBG, weight, fracture history, calcium intake, and smoking status</td>
<td>1.32 (1.12-1.54)</td>
<td>0.001</td>
<td></td>
<td>1.23 (1.06-1.43)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

* Estimated for every SD decrease of ln(TT concentration). The equivalent SD was 206 ng/dL for back-transformation.

predictor of fracture risk. We chose this predictor because TT measurement is clinically recommended as both the initial and the confirmed test for diagnosis of androgen deficiency (1). Measurement of free or bioavailable testosterone is suggested for a subgroup of patients whose TT concentrations are close to the lower limit of the reference range (1), although its direct measurement is costly, laborious, and not always possible in local laboratories. Furthermore, free testosterone calculated from TT and SHBG concentrations was found to have excellent predictive capability and very good performance (15). Therefore, calculated free testosterone has been used in most studies. At present, RIA and LC-MS/MS are commonly used for measuring TT, but it is not clear whether the discordance between the 2 methods could affect the classification of hypogonadism. In this study, we showed that the correlation between TT concentrations determined by RIA and LC-MS/MS was reasonably high, consistent with previous observations (5–8). At the individual level, this correlation translated into some inconsistency in the classification of male hypogonadism between the 2 methods of measurement, regardless of the serum TT thresholds used. Nevertheless, at the population level, this had little effect on the predictive ability of TT in terms of fracture risk.

The discordance between RIA and mass spectrometry in the measurement of serum testosterone could be related to matrix effects and the functional sensitivity of each method. Interfering substances or matrix effects could substantially affect the imprecision of immunoassays without an extraction and chromatography component. Because 98% of circulating testosterone binds to serum proteins (16), certain serum compounds that are not removed from serum, especially SHBG, could interfere with the no-extraction immunoassays (17, 18). The discordance could also result from antibody cross-reactivity, inadequate limit of detection, or poor functional sensitivity of the immunoassays (7). Moreover, the current testosterone immunoassays that use testosterone analogs as standards have not been fully validated or standardized (19).

Excellent agreement between TT_{RIA} and TT_{LC-MS/MS} has been reported (8), with correlation coefficients ranging from 0.92 for the automated multipurpose immunoassays from Bayer (Centaur) to 0.98 for a commercially available RIA kit (DPC-RIA, Core Endocrine Laboratory, Penn State University-Hershey Medical Center). All methods except the DPC-RIA, however, had an intercept of the Deming regression significantly different from that of LC-MS/MS, which is commonly considered a reference method. The inconsistency between that study and ours could be a result of differences in the population studied, RIA methods used, or method of data analysis. The participants in the study of Wang et al. (8) were much younger and less likely to have a low TT concentration than our participants. Wang et al. (8) recruited 122 men, ages 18–68 years; meanwhile, all 602 elderly men in our study were age ≥60 years old, with a mean age of 73 years. Aging is known to be associated with decline in serum testosterone (20, 21). More importantly, whereas 29% of our participants had TT concentrations of ≤300 ng/dL, only 25 hypogonadal men in Wang’s study had sera collected before testosterone therapy, a rate of 20%. The higher proportion of low TT concentrations contributes positively to the between-method discordance, since imprecision of RIAs increases at lower TT concentrations (4, 6, 7). The mean ratio of the concentrations of TT_{RIA} to TT_{LC-MS/MS} was 1.06 but varied between 0.5 and 2.5 at low TT concentrations (6). Similarly, disagreement between commercial immunoassays and mass spectrometry has been reported to be ≤5-fold at TT concentrations <230 ng/dL (7). The other possible reason for the better agreement identified in the Wang et al. study is method of analysis. All values that were below the lower limit of quantification or statistical outliers were excluded from their analysis, leaving 101 more centralized samples than ours.
We found that, at the individual level, there was a substantial discordance in the diagnosis of hypogonadism between RIA and LC-MS/MS. Indeed, the κ statistic was only 0.57, a little bit higher than chance agreement (0.5).

We consider that the poor rate of agreement in the diagnosis could be due to the loss of information when a continuous variable is dichotomized (22), especially when a cutpoint is selected arbitrarily (23). Statistically, a population measure, i.e., a correlation coefficient, is not necessarily applicable to an individual, since the former focuses more on a mean than absolute values. On the other hand, an absolute value of TT is used to diagnose whether an individual is hypogonadal. Second, to fulfill clinical classification of male hypogonadism, TT concentration is dichotomized by an arbitrary value. A threshold of low TT concentration has long been controversial (1, 4). The Endocrine Society Position Statement considered a TT concentration of ≤ 200 ng/dL as hypogonadal, whereas a TT concentration of 200–320 ng/dL was considered to be equivocal (4). In contrast, a TT concentration of ≥ 346 ng/dL is reported as healthy in

Fig. 3. Correlation between predicted probabilities of fracture by $\text{TT}_{\text{LC-MS/MS}}$ and TT_{RIA} concentration.
the European Association of Urology recommendation (24). Without any strong biological plausibility background, a cutpoint of 300 ng/dL, which is the lower limit of the reference range for TT concentrations in healthy young men in some but not all laboratories (7), has been recently used as a threshold of low testosterone. In our study, a third of TT concentrations that fell within the hypogonadal range turned out to be within reference intervals on repeat measurement (25), whereas a TT concentration below the reference range in a 24-h period was reported in ≥15% of healthy young men (26). The imprecision of TT measurement, regardless of the laboratory method, emphasizes the need to confirm a low TT concentration by repeat measurement before establishing a diagnosis of hypogonadism for men with symptoms of androgen deficiency (1).

An important contribution of this study is that the discordance between TTLC-MS/MS and TTRIA had little effect on the predicted probability of fractures. We found that each SD decrease of TT concentration was associated with a 32% and 23% increase in fracture risk by LC-MS/MS and RIA, respectively. However, the correlation between predicted probability of fracture on the basis of TTRIA and TTLC-MS/MS was excellent (R ≥ 0.96). More importantly, an absolute difference between TTRIA and TTLC-MS/MS (27 ng/dL or 0.9 nmol/L) was only 13% of an SD of TT concentrations, making the between-method discordance very unlikely to alter the testosterone–fracture relationship.

Emerging evidence suggests that apart from testosterone, estrogen also plays important roles in skeletal maturation and mineralization in men (27–29). This has some biologic basis, since the majority of estrogens in elderly men are derived from androgens by peripheral conversion (30). In our study, TT concentrations significantly correlated with serum estradiol (r = 0.45 for TTLC-MS/MS and 0.35 for TTRIA) and SHBG (0.35 for TTLC-MS/MS and 0.36 for TTRIA).

Our findings should be interpreted within the context of potential strengths and weaknesses. With 602 serum samples analyzed for TT determination by both RIA and LC-MS/MS, this is the largest study ever conducted to examine the accuracy of the immunoassays with mass spectrometry as a reference method, using patient samples with available clinical information. In addition to the robust design, a sufficiently large sample is known to improve certainty of the findings. The study participants had been followed for a reasonably long period, with sufficient fracture incidence for a meaningful analysis. All fractures that occurred within the studied period were ascertained by x-ray reports. However, because serum samples were not collected consistently in the morning, a potential random measurement error could have occurred. This error, if any, would not significantly alter the findings in our elderly cohort, since a circadian rhythm of TT concentrations was reported to be absent in elderly men (31).

In summary, these data show that there is a moderate concordance in total testosterone measurements between the RIA and LC-MS/MS methods (r = 0.72). Although this moderate concordance could substantially misclassify the status of hypogonadism, it has little effect on the prediction of fracture.

References

Clinical Chemistry 61.9 (2015) 1189

