Letters to the Editor

Using the Wrong Model Can Lead to Unsupported Conclusions about Glucose Meters

To the Editor:

Van Herpe et al. (1) modeled the effect of glucose sensor errors to provide total error acceptability limits to prevent harm to patients. In particular, the authors state that if the total error is <15.7%, the probability is zero that glucose meter results will fall in the D zone (causes severe injury or death) of a glucose meter error grid.

This cannot be true for several reasons. The authors simulate total error by sampling from a gaussian distribution. They may well have observed zero results in the D zone, but this is not the same as claiming a zero probability of D zone results. The gaussian distribution ranges from minus infinity to plus infinity, so as long as the SD is not zero, it is a mathematical certainty that the probability of results larger than 15.7% is greater than zero.

But perhaps more important is the incompleteness of the error model chosen by the authors. They have not modeled the effects of interferences, which have previously been shown to contribute to total error and are independent from average bias and imprecision (2). Granted that interferences are difficult to model, but a survey has shown that they are a significant source of clinician complaints about laboratory error (3) and have caused injury and death related to glucose meter use (4).

Additionally, one might infer from the authors’ results that specific combinations of imprecision and bias will provide acceptable results, but Krouwer (5) has shown that failing to include interferences in the model can be misleading, especially for glucose meters, where interferences are common and increase the total error beyond that modeled for bias and imprecision.

Van Herpe et al. state that user errors, as well as several other effects, have been omitted from their model. Whereas some types of user error will affect results regardless of the meter, harm to patients nevertheless occurs.

There is always a risk of D zone errors. Risk analysis with methods such as failure mode effects analysis and fault tree analysis are an effective way to minimize the risk of large, rare errors.

In Reply

We thank Dr. Krouwer for his constructive suggestions regarding the total error modeling strategy as recently presented in Van Herpe et al. (1). We agree that, from a mathematical point of view, the probability of glucose meter results falling in the D zone should not be zero for a real meter with a total error below the accuracy threshold. As clearly stated in our work, we formulated this conclusion only in the scope of the executed simulations. Although the number of simulations was high compared to alternative simulation studies in this field, it does not imply a 100% guarantee for future real behavior. Risk analysis techniques (such as failure mode effects analysis) are complementary to simulation studies and are even essential in the regulatory process (CE marking in Europe, Food and Drug Administration approval in the US) of such medical devices, but fell outside the scope of the work.

We also agree with Dr. Krouwer that the error mode used, though forming the base of similar simulation studies (2–4), is incomplete, as random patient interferences were not included. Together with the pre- and postanalytical errors as mentioned in our article (1), these are factors that will undoubtedly increase the real total error. This is exactly the reason we advised

References


Jan S. Krouwer*
Krouwer Consulting
Sherborn, MA

* Address correspondence to the author at:
Krouwer Consulting
26 Parks Dr
Sherborn, MA 01770
Fax 508-653-2379
E-mail jan.krouwer@comcast.net

© 2015 American Association for Clinical Chemistry

Jan S. Krouwer*