in the phosphomolybdate method (2). The temporal association with treatment makes this the likely cause.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: D.R. Dufour, Clinical Chemistry, AACC.

Consultant or Advisory Role: None declared.

Stock Ownership: None declared.

Honoraria: None declared.

Research Funding: None declared.

Expert Testimony: None declared.

Patents: None declared.

References


Podcasts Go Platinum!

Robert Rej1,2*†

“Podcast,” a noun now firmly entrenched in the vernacular, is a recently minted portmanteau suggested just 10 years ago (1, 2). It is sobering to note that other proposals to name the then-new phenomenon of audio production distributed over the Internet included “Audioblogging” and “GuerillaMedia” (2). As I wrote a draft of this article, I became aware that the predecessor for all of today’s mobile media players—the Sony Walkman—just celebrated its 35th anniversary (3). One wonders what Akio Morita, who passed away just 1 year before the advent of the World Wide Web, would think of today’s technologies that in many ways are progeny of that once sleek, now bulky, cassette-playing audio device.

As might have been anticipated, podcasts were first embraced by traditional broadcast media, but that was quickly followed by print media and other organizations who now had new avenues for distribution via the Web. Clinical Chemistry was an early adopter of the format and introduced the feature in 2009 (4). At the time, some were skeptical of the project, but new technologies are often regarded as alien in academic environments. Nonetheless, podcasts have proved to be an enormously successful feature of the journal, and they are now part of the offerings of many scientific journals. As of this writing, 250 Clinical Chemistry podcasts are available, with downloads to date totaling over 1 million; that’s “platinum” in RIAA (Recording Industry Association of America) parlance.

In addition to downloads, accessible from the journal’s home page (www.clinchem.org), more than 2 dozen of the features have aired on radio stations throughout the world. The host of the Clinical Chemistry podcasts is reporter Bob Barrett, who also produced the syndicated radio program The Health Show carried by radio stations around the world. Although the final installment of The Health Show was aired a year ago (5), the public radio program The Best of Our Knowledge, also produced by Barrett (6), has continued the tradition to make available material originally appearing as Clinical Chemistry podcasts. These redistributions, as well as availability through the distributor iTunes, have attracted the attention of interested listeners, increasing the visibility of our field well beyond the walls of medical laboratories.

As it was 5 years ago, our vision remains that the podcasts provide an opportunity to amplify the message that appears in the print version. The number of
podcasts available has also significantly increased from a modest 1 or at most 2 per issue to about 5. Podcasts are ideal to catch up on the latest from Clinical Chemistry while driving or commuting, as well as to gain some unpublished insights from the author.

We hope that you have enjoyed this audio feature, and if you have not yet listened, we invite you to sample those that might interest; look for the distinctive red earbud icon in the Table of Contents. The Clinical Chemistry podcasts are available to all, with no subscription or fee required. It is the journal’s intent to continue this feature, as well as to further explore video and other capabilities of electronic media.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Newborn Screening by Whole-Genome Sequencing: Ready for Prime Time?

Julie A. Fleischer¹ and Christina M. Lockwood²*

In a recent article in Science Translational Medicine, Knoppers et al. bring to light issues surrounding a potential shift in newborn screening (NBS)³ programs from biochemical assays to sequencing (1). As the cost of whole-genome sequencing (WGS) falls, genetic testing of all newborns is increasingly a fiscal option. This proposition is exciting, terrifying, or both, depending on your perspective. The initial and current tenant of NBS programs is to benefit the “best interests of the child.” Testing has been intentionally limited to detection of severe health conditions for which early treatment improves morbidity or mortality. Because NBS is currently well accepted by society as being fully for the well-being of the child and the family, testing is completed with no explicit consent from parents. If this testing is expanded to WGS, however, studies show that some parents may choose to opt out (2).

The amount of information generated by shifting to WGS for all newborns would be an exponential increase. Single-gene and multigene disorders could be added to the current diseases tested. Gene testing could also increase the accuracy of current testing and could add pharmacogenetic information, both of which have the potential to improve patient care. Families could seek preventive or therapeutic interventions for their child at an early age and improve the child’s medical or developmental outcome. Identification of some diseases could facilitate diagnosis and treatment of previously undiagnosed family members or inform parents of their carrier status to assist in family planning decisions. The potential for population and research studies to discover new disease associations would be virtually limitless. In addition, the emotional stress and significant cost of

References


© 2014 American Association for Clinical Chemistry

¹ Department of Pediatrics, Division of Genetics and Genomic Medicine, St. Louis Children’s Hospital, St. Louis, MO; ² Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO.
* Address correspondence to this author at: 660 S Euclid Ave, Campus Box 8118, St Louis, MO 63110. Fax 314-454-0521; e-mail clockwood@path.wustl.edu.
Received June 10, 2014; accepted June 17, 2014.
DOI: 10.1373/clinchem.2014.226563
© 2014 American Association for Clinical Chemistry

Nonstandard abbreviations: NBS, newborn screening; WGS, whole-genome sequencing; ACMG, American College of Medical Genetics and Genomics.