increased when D2-containing samples were included. For the Centaur assay, on the other hand, the regression slope increased, and the r² decreased. The mean (SD) changes in bias from scenario (a) to (b) for the 4 assays are as follows: Liaison assay, −17.4% (6.0%) to −19.2% (4.6%); Architect assay, 0.9% (5.2%) to −7.8% (4.2%); Cobas assay, −11.4% (11.9%) to −15.5% (7.0%); Centaur assay, −27.7% (7.0%) to −17.0% (8.0%).

The effect of D2% on assay bias is illustrated in Fig. 1B. The Liaison assay had an insignificant bias change as D2% increased. The architect and Cobas assays showed an increasingly negative bias with increasing D2%, whereas the negative bias of the Centaur assay decreased and changed to a positive bias.

We calculated D3 cross-reactivity normalized to D2 reactivity (see Fig. 1 legend). The values for each assay in Fig. 1B are displayed as the mean (first to third quartiles) and are consistent with the change in the assay’s bias with D2%. Although cross-reactivities are defined differently from Le Goff et al. (2) and the manufacturers’ claims, our results showed the same order of relative D2 cross-reactivity: Centaur > Liaison > Cobas > Architect.

Although D3 is the preferred supplement form for treating vitamin D deficiency (4, 5), we have observed a high prevalence of patient samples containing substantial amounts of D3, and we have demonstrated the different effects of D2 content on the accuracies of commercial assays. Therefore, correctly interpreting total 25-OH-D results and monitoring patient compliance requires that vitamin D status, type of supplementation, and measurement method be considered.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

Acknowledgments: We thank D.W. Bernard, W.L. Chandler, T.G. Emmott, B. Hilson at The Methodist Hospital, I. Bermudez at the MD Anderson Cancer Center, and R. Cromwell at the Andrology Laboratory of Obstetrics and Gynaecology Associates for supporting the processes of assay method validations and correlations.

References

Irene Shu²
Sergio Pina-Oviedo²
Gabriela Quiroga-Garza²
Qing H. Meng³
Ping Wang²

² Department of Pathology and Genomic Medicine
The Methodist Hospital
Houston, TX
³ Department of Laboratory Medicine
MD Anderson Cancer Center
Houston, TX

*Address correspondence to this author at:
6565 Fannin St., MS205

Letters to the Editor

Dried Blood Spot Quality Control Materials for Newborn Screening to Detect Lysosomal Storage Disorders

To the Editor:

It is with great interest that we read the recent report by Spacil et al. on a high-throughput assay to detect 9 lysosomal enzymes from dried blood spots (DBS)¹ collected by newborn screening programs (1). Newborn screening activities to detect lysosomal storage disorders (NBS-LSD) have generated a great deal of discussion worldwide. The availability of tandem mass spectrometry-based assays available for high-throughput population screening and of US Food and Drug Administration–registered reagents for use in these assays led to an ongoing worldwide conversation about optimizing NBS-LSD assays. Recognizing the lack of DBS QC for NBS-LSD, the Newborn Screening Translation Research Initiative at the CDC developed large-scale methods to produce DBS that emulate normal and deficient lysosomal enzyme activities. The preparation and evaluation of these materials was originally reported in this journal (2). These DBS-QC have been in use globally for over 5 years, and they were a critical element of the assay validation reported by Spacil et al. We want to be sure that Clinical Chemistry readers can lo-

¹ Nonstandard abbreviations: DBS, dried blood spots; NBS-LSD, newborn screening activities to detect lysosomal storage disorders.
Letters to the Editor

To the Editor:

In the recent special report on the assessment of apolipoprotein B (apoB)\(^1\) and nuclear magnetic resonance particle number\(^1\), the authors recommended that measurement of particle number be incorporated into the guidelines for the assessment of cardiovascular disease (CVD) risk.

However, the literature reviewed provides no basis for this recommendation. Searching the literature using the key terms apo B and LDL-P (LDL particle number) and the name Otvos, the authors identified 25 studies evaluating association with CVD or events, metabolic syndrome, diabetes mellitus or diabetic complications, plasma lipids and lipoproteins, or miscellaneous events. Not only were different associations studied, but adjustment for other risk factors varied considerably and hardly ever included lipid panel components. This information only supports the conclusion that apo B and LDL-P are risk factors.

In addition, the disclosures inadequately inform the reader of a substantial conflict of interest. Four, not 3, of the authors are affiliated with HDL, which is Health Diagnostic Laboratory, Inc. The company’s website (www.hdlabinc.com) indicates it offers “the most comprehensive laboratory test menu of risk factors and biomarkers for cardiovascular and related diseases.” Because, as the authors mention, 216 000 000 lipid panels are performed annually in the US, implementation of their recommendation would have huge financial implications.

Recommending measurement of particle number will become plausible only when clinically significant improvement in risk stratification can be demonstrated over that based on conventional risk factors. The references cited do not document such improvement, and the comparison of single risk factors, e.g., LDL cholesterol vs particle number, does not adequately address this question.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: None declared.
Consultant or Advisory Role: None declared.
Employment or Leadership: None declared.

Research Funding: None declared.
Expert Testimony: None declared.

Research Funding: Newborn Screening Translation Research Initiative, which receives financial support from the CDC Foundation through an agreement with Genzyme Corporation, a Sanofi Company.

Patents: None declared.

References

Victor R. De Jesus*
Hui Zhou
Robert F. Vogt

Newborn Screening and Molecular Biology
Branch
Division of Laboratory Sciences
National Center for Environmental Health
CDC
Atlanta, GA

* Address correspondence to this author at:
Newborn Screening and Molecular Biology Branch
CDC
4770 Buford Highway

Apolipoprotein B and Nuclear Magnetic Resonance Particle Number

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

Reference

Ralph H. Stern*

Department of Internal Medicine
University of Michigan
Ann Arbor, MI

*Address correspondence to the author at:
Cardiovascular Medicine
University of Michigan
24 Frank Lloyd Wright Dr., Lobby A

* Nonstandard abbreviations: apoB, apolipoprotein B; CVD, cardiovascular disease; LDL-P, LDL particle number.