Science needs public support, and therefore communicating science well to the wider society is paramount. On the other hand, the very essence of art is that it communicates ideas and invites interpretation. That is a fascinating convergence.

In science, communication is done by scientists themselves, by popular-science writers, or by journalists. There have been exceptional communicators, such as the American physicist Richard Feynman (1918–1988). On the other hand, a degree of distrust has existed, at least within some scientific communities, of “outsiders” who dare to speak about—or criticize—science. The issue might be that although artworks may comment on science, their perception or interpretation is not predictable. But then that is the essence of an open discourse, and neither scientific training nor a scientific mindset is geared to make the high cultural impact that the arts can achieve.

In recent decades, the effective dissemination of messages related to the risks associated with a high-cholesterol diet, for instance, has been a key issue for many organizations, including the National Cholesterol Education Program, whose published guidelines and public information have a clarity that has been essential (1).

In this context, it is worth looking at Fig. 1, which shows a piece entitled Arteriosclerose, 1961—an artist’s completely independent take on the issue. This simple collection of greasy cutlery sealed in a box powerfully focuses the mind on the relationships between diet and atherosclerosis. It creates a lasting—and high-status—image in the public mind.

The work is by Arman (1928–2005), an American artist born Armand Pierre Fernandez in Nice, France. He earned a degree in philosophy and mathematics and then studied in the Ecole Nationale des Arts Decoratifs in Nice. Arman taught at the University of California in Los Angeles in 1967 and 1968 (2–4).

His main artistic interests were everyday objects used in consumer society. Arteriosclerose, 1961 is one of his “Accumulations” he created between 1959 and 1962—collections of objects in polyester castings or in transparent cases. He also created pieces that included refuse, named “Poubelles” (trash bins), which brought him fame. The objects he used were often broken, sliced, or deformed. A large public sculpture, entitled Long Term Parking and created in 1982 in Jouy-en-Josas in France, is constructed of 60 cars embedded in concrete (5).

Arman, Yves Klein (1928–1962), and several others became the founders of the movement known as the New Realism (6, 7). It appeared on the art scene after years of dominance by abstraction, epitomized in Abstract Expressionism. New Realism shifted the focus from the artwork itself (as it was in Abstract Expressionism) to the outside world.

Actually, the use of found objects in art goes back quite far, to the Dada movement between 1916 and 1923. Dada started in Zurich as a protest against the cultural disaster of the First World War. It essentially rejected reason, logic, and conventional aesthetics. Dada spread to several centers in Europe and the US and was represented by such artists Jean Arp, Kurt Schwitters, Max Ernst, and the Romanian poet Tristan Tzara, among others. These artists were joined by Marcel Duchamp, Francis Picabia, and Man Ray, who founded Dada New York. Duchamp’s idea that anything might become a work of art became highly influential in the visual arts. Ordinary objects became widely used, either as part of installations or as free-standing pieces. The influence of Dada was visible in Pop Art and, much later, in the installations and performances of the postmodern period.

Why do everyday objects have such impact when they are regarded as artworks? Perhaps because art has a high status in society. Another reason is that images and installations are mostly set up in particular spaces—art galleries—that are conducive to reflection and thinking about contexts (8).

There are efforts and initiatives aimed at bringing artists closer to science by, for instance, creating artist-in-residence arrangements at universities and occasionally making grant funding available to artists and scientists. Encouraging such arrangements makes a lot of sense. Ongoing contact with artists can benefit science—and certainly culture.
Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

Acknowledgments: My thanks to J. Gardiner for her excellent secretarial assistance.

References


DOI: 10.1373/clinchem.2012.199901