Neoclassicism in the Industrial Context

Marek H. Dominiczak*

The Enlightenment thinkers of the 18th century set out to create a framework for a rational view of the world. Their reference point was Isaac Newton (1). They were convinced that everything could be explained scientifically and were not shy of broad generalizations: In particular, they believed, in analogy to Newtonian physics, that there existed laws that governed society (2, 3).

The Enlightenment was also a period of closeness of science, industry, and the arts. A fascinating example of this trend emerged in England. Birmingham, Manchester, and Newcastle were fast-growing centers of the new industries, the development of which was grounded in the progress in chemistry and physics, and in such inventions as the steam engine, and the spinning frame for the textile industry. An array of societies founded in the second half of the 18th century provided platforms where their members—industrialists, scientists (and artists)—shared their views on new developments, their applications, and the changing world.

The most active of the out-of-London societies was the Lunar Society of Birmingham. It was founded in 1764–1765 by Erasmus Darwin, Matthew Boulton, and Charles Small. Erasmus Darwin—the grandfather of Charles Darwin—was a physician and poet (2, 3). He wrote *Zoonomia; or, the Laws of Organic Life*, which, among its many topics, gave an outline of the early concept of evolution. Boulton was a factory owner who later went into partnership with James Watt. Their firm marketed Watt’s steam engine (known as the Boulton & Watt steam engine) to mines and factories (4). Charles Small was a mathematician. The other members of the Society were Josiah Wedgwood, founder of the world-famous ceramics factory; John Whitehurst, a geologist; James Watt; and Richard Arkwright (1732–1792), a textile manufacturer (5). The collective thinking of the members of the Lunar Society went far beyond specialist business interests. They addressed education, transport, and the social impact of the new work patterns.

In this context, the arts were seen as an important medium of social and moral improvement. The key characteristics of the Enlightenment period were the revival of classicism and what was regarded as the high-minded simplicity of ancient Greece and Rome. The interest in ancient art was sparked by the discovery of the Roman cities of Herculaneum (1738) and Pompeii (1748) and by the writings of the German scholar Johann Joachim Winckelmann. In painting, classical themes were revived dramatically by the Frenchman Jean Louis David, whose painting *Oath of the Horatii* created a sensation in Rome and Paris.

The quest for an “elevated” approach made Enlightenment representations rather severe in their realism, restraint, and moral didacticism. The previously fashionable style, Rococo, was now strongly rejected. The compositions of pictures were meant to emphasize order and harmony. The line was strongly preferred to color. The emphasis on simplicity extended to architecture—architects such as Robert Adam spoke of geometric purity and favored the rather stern Greek Doric order.

Interestingly, artists attempted to merge these classical influences with the daily reality of science and manufacturing. This process is evident in the work of a painter associated with the Lunar Society, Joseph Wright of Derby (1734–1797) (6). Wright trained in London in the studio of a portrait painter, Thomas Hudson. He worked for a short time in Liverpool and visited Italy from 1773 to 1775. Afterward, Wright tried—unsuccessfully—to establish himself in the city of Bath; he subsequently returned to Derby.

Wright created landscapes and portraits, including the fashionable ones set in the open air, but he immortalized himself as the creator of works associated with the emerging primacy of science and industry. His paintings in the scientific–industrial genre included *An Iron Forge* (1772), *Arkwright’s Cotton Mills by Night* (1782–1783), and his iconic *An Experiment on a Bird in the Air Pump* (1768), which is currently in the National Gallery, London (7, 8).

Wright was able to render masterly the effects of artificial light and often used the sources of light in paintings as a metaphor for knowledge. The dark interiors, candles, and lamps that he painted were in the tradition of Rembrandt, Gerrit van Honthorst, and their great predecessor Caravaggio. Wright’s contribution to Enlightenment neoclassicism is *The Corinthian Maid* (Fig. 1) (9). The work illustrates the Greek tale of the origin of relief sculpture. A woman called Dibutades traces on a wall the outline of her sleeping lover’s shadow. The young man is about to depart on a journey. Later, as the story goes, her father, a potter, would fill...
the traced silhouette with clay to create the first relief sculpture. The light in the painting bears the trademarks of Joseph Wright: The soft light in the scene produced by the hanging lamp behind the curtain is balanced by the bright spot of the potter’s kiln in the dark room on the right. Note also the strong lines and the almost artificial, sculptural quality of Dibutades’ figure.

All in all, Joseph Wright’s work illustrated 2 important streams of late Enlightenment culture: the pragmatism of industrial reality and the attempts to connect it to the classical past. How to combine technological reality with the spirit of history without appearing naive, clichéd, or overtly didactic remains a dilemma today—more than 200 years later.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

Acknowledgments: My thanks to J. Gardiner for her excellent secretarial assistance.

References


DOI: 10.1373/clinchem.2012.199877