Increasing Demand for Vitamin D Testing Requires Accurate Results and Improved Workflow

New Vitamin D Total Test from Siemens Demonstrates Concordance with LC/MS/MS

Vitamin D testing volumes continue to grow, making it one of the most commonly requested assays. Current testing methods for vitamin D include manual immunoassays, automated immunoassays, and direct detection methods (liquid chromatography tandem mass spectrometry (LC/MS/MS) and high performance liquid chromatography). Automated assays are typically the best choice for many laboratories.

When considering an automated vitamin D testing solution, clinical concordance to LC/MS/MS and other key questions must be considered:

- **Will the test measure total 25(OH) vitamin D?** Labs need to provide accurate assessment of vitamin D status through the equimolar measurement of total 25(OH) vitamin D—the sum of 25(OH) vitamin D2 and 25(OH) vitamin D3.1-3
- **How will this test improve the turnaround time to clinicians?** Effective workflow management of high-volume testing includes fast turnaround time, minimal labor, and high instrument throughput.1 The additional ability to test in-house can significantly improve turnaround time.
- **How does the test provide reproducible results?** Laboratories have reported discrepancies between assays. In one lab, 60% of the results from an immunoassay method indicated insufficiency; compared to only 30% by LC/MS/MS.2 Another laboratory had similar discrepancies for sample classification: 80% of samples had levels below 32 ng/mL by immunoassay, but only 46% of samples by LC/MS/MS.3 In the absence of an international standard for vitamin D, it is important that assays be traceable to LC/MS/MS.

French and Australian Method Comparison Studies Demonstrate Concordance between the Siemens ADVIA Centaur Vitamin D Total Assay and LC/MS/MS

Two independent method comparison studies evaluated concordance to LC/MS/MS by comparing the ADVIA Centaur® Vitamin D Total assay to LC/MS/MS, Diasorin 25-OH Vitamin D radioimmunoassay, and Diasorin LIAISON 25-OH Vitamin D TOTAL assays. The data were evaluated by Deming regression and Pearson correlation coefficient analyses.

French method comparison study results

113 samples with known Diasorin 25-OH Vitamin D radioimmunoassay (Diasorin RIA) values were sent for ADVIA Centaur measurement at Siemens Healthcare Diagnostics (Tarrytown, NY, USA), Diasorin LIAISON 25-OH Vitamin D TOTAL assay (Diasorin LIAISON) measurement at the Research and Development Institute, Calabasas, CA, USA, and to a U.S. accredited laboratory for LC/MS/MS.

The ADVIA Centaur and Diasorin RIA demonstrated good agreement with LC/MS/MS; Pearson correlation coefficients, 0.92 and 0.94, and Deming regressions, -1.80 ng/mL + 0.98x and 1.86 ng/mL + 0.88x, respectively (Table 1 and Figure 1).

The Diasorin LIAISON assay demonstrated a Pearson correlation coefficient of 0.77 and a Deming regression of -0.80 ng/mL + 0.87x (Table 1 and Figure 1).

Table 1. Pearson correlation coefficient and Deming regression results by method compared to LC/MS/MS.

<table>
<thead>
<tr>
<th>Sample</th>
<th>ADVIA Centaur XP</th>
<th>Diasorin RIA</th>
<th>Diasorin LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47.6</td>
<td>120.0</td>
<td>52.5</td>
</tr>
<tr>
<td>2</td>
<td>32.3</td>
<td>71.6</td>
<td>57.5</td>
</tr>
<tr>
<td>3</td>
<td>55.7</td>
<td>114.0</td>
<td>65.0</td>
</tr>
<tr>
<td>4</td>
<td>57.2</td>
<td>107.0</td>
<td>70.0</td>
</tr>
<tr>
<td>5</td>
<td>47.5</td>
<td>125.0</td>
<td>72.5</td>
</tr>
<tr>
<td>6</td>
<td>77.7</td>
<td>30.8</td>
<td>75.0</td>
</tr>
<tr>
<td>7</td>
<td>53.7</td>
<td>131.0</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Table 2. Summary of clinically relevant discordant results by assay type compared to LC/MS/MS. All results are reported in nmol/L. Deficiency, <50 nmol/L; Insufficiency, 50–75 nmol/L; Sufficiency, 75–250 nmol/L; Toxicity, >250 nmol/L. Samples highlighted below had a >40% difference in value from LC/MS/MS.

New Vitamin D Total test from Siemens provides highly accurate, reproducible results in 18 minutes

Vitamin D test volumes continue to grow rapidly, requiring laboratories to adopt a robust solution to meet their vitamin D testing needs. When laboratories consider implementing a new methodology, it is important to include clinical concordance to LC/MS/MS as an acceptable evaluation criteria to ensure correct assessment of vitamin D status—deficiency, insufficiency, sufficiency, or toxicity.

In two studies, vitamin D results from Siemens’ ADVIA Centaur systems demonstrated concordance to LC/MS/MS. Additionally, the Siemens’ Vitamin D Total assay can be run on a routine analyzer with results in 18 minutes.

To learn more about the Siemens ADVIA Centaur Vitamin D Total assay, please visit www.siemens.com/vitaminDtotal

References:

ADVIA Centaur and all associated marks are trademarks of Siemens Healthcare Diagnostics Inc. All other trademarks and brands are the property of their respective owners.
Complete Reagent Kits
Multilevel Calibrator Sets
Quality Controls

New Parameter Sets

THERAPEUTIC DRUG MONITORING BY TANDEM MASS SPECTROMETRY

Analyze up to 150 drugs with one kit.

> New: Antidepressants
> New: Antiepileptics
> New: Benzodiazepines
> Neuroleptics
> Psychostimulants

Tests are comprehensively validated for all tandem-MS with sufficient sensitivity.

For safe diagnostics worldwide.

Chromsystems GmbH · Munich · Germany
Phone: +49 89 18930-300 · Fax: +49 89 18930-399
www.chromsystems.de · mailbox@chromsystems.de

Certified according to
DIN EN ISO 9001
DIN EN ISO 13485
ISO 13485 CMDR

Available soon:
> Antimykotics
> Anti-HIV-drugs
> Antiarrythmics
Quick Guide to Submission

For additional article types and detailed instructions, please see our Information for Authors at http://www.clinchem.org/site/info_ar/info_authors.xhtml.

<table>
<thead>
<tr>
<th>Type of Submission*</th>
<th>Word Limit</th>
<th>Structured (S) or Unstructured (U) Abstract: Word Limit</th>
<th>Maximum Number of References</th>
<th>Total Number of Tables/Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td>3,500</td>
<td>S: 250</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Brief Communication</td>
<td>1,500</td>
<td>S: 250</td>
<td>20</td>
<td>1 each</td>
</tr>
<tr>
<td>Citation Classics</td>
<td>600</td>
<td>Nonapplicable</td>
<td>6</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Clinical Case Study</td>
<td></td>
<td>500</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Case description</td>
<td></td>
<td>Nonapplicable</td>
<td>6</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Case discussion</td>
<td></td>
<td>1,000</td>
<td>Nonapplicable</td>
<td>2</td>
</tr>
<tr>
<td>3-5 questions and up to 5 points to remember</td>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Case Study Commentary</td>
<td>300</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Editorial</td>
<td>1,500</td>
<td>Nonapplicable</td>
<td>15</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Letters to the Editor / Reply</td>
<td>750</td>
<td>Nonapplicable</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Mini-Review</td>
<td>3,500</td>
<td>S: 250</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>Opinion</td>
<td>1,500</td>
<td>Nonapplicable</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Perspective</td>
<td>1,500</td>
<td>Nonapplicable</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Q&A</td>
<td>3,500</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Review</td>
<td>5,000</td>
<td>S: 250</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>What Is Your Guess?</td>
<td></td>
<td>75</td>
<td>Nonapplicable</td>
<td>5</td>
</tr>
<tr>
<td>Case description</td>
<td></td>
<td>75</td>
<td>Nonapplicable</td>
<td>1</td>
</tr>
<tr>
<td>3 questions</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Case discussion</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

*This chart represents common types of submissions to *Clinical Chemistry*.

Manuscript Formatting
- Double-spaced text, 1-inch margin, 12-point font size in Arial, Helvetica, or Times New Roman
- Numbered pages with references numbered sequentially in main text
- Title page listing title, authors (first name, middle initial, last name), each author’s affiliation during the study, corresponding author’s contact information, running title, keywords, list of any previous presentation of manuscript, and any disclaimers
- SI units used throughout manuscript according to Information for Authors

Metadata (to be entered online)
- A valid and unique e-mail for each author
- Authors’ current institution, address, telephone, and fax
- Author Disclosure Forms and Contribution Forms to be completed by each author before submission. Copyright Transfer Agreement to be completed by each author after acceptance.
- *Clinical Chemistry* manuscript number of any companion papers (if applicable)

Compliance with Guidelines
- A MIQE checklist is required for all studies using quantitative real-time PCR experiments; a STARD checklist is required for all studies or trials of the diagnostic accuracy or performance of a diagnostic test; a CONSORT diagram is required for all randomized and Phase III trials; a MIAME checklist is required for all studies that present data for microarray experiments.
- All studies involving human study participants must indicate that they are in compliance with the Declaration of Helsinki ethical principles for medical research involving human study participants. A statement must be included in the text that Institutional Review Board approval was obtained and written informed consent obtained from study participants.

Permissions
- Written permission from the copyright holder is required to reproduce any copyrighted material
With 30 years experience in human disease diagnostics, you can trust Randox to deliver on quality, accuracy and innovation.

Randox Molecular Diagnostics offers a growing range of Molecular Arrays and assay formats, providing diagnostic, prognostic and predictive solutions for a range of conditions including:

STI Multiplex Array
Rapidly screens for the presence of 10 different sexually transmitted diseases simultaneously from one patient sample

KRAS, BRAF, PIK3CA* Array
Rapid qualitative detection of point mutations within the genes KRAS, BRAF and PIK3CA from fresh/frozen and formalin fixed paraffin embedded tissue DNA.

*for research use only

Respiratory Multiplex Array
Simultaneous detection of 22 respiratory pathogens in individuals suspected of Respiratory Tract Infections (RTIs)

Also available
Cardiac Risk Prediction
Familial Hypercholesterolemia (FH)

For research only. Not for use in diagnostic procedures.
Managing the Challenges of Biological Variation

Wednesday, September 19, 2012 ~ 2:00-3:30 pm Eastern U.S. Time

Lab statistics aren’t sexy, but performing the right calculations to produce clinically appropriate and correctly interpreted test results can be life-altering for patients. For example, using statistics to adjust for biological variation in serial troponin results can mean the difference between a patient being diagnosed with an AMI and getting the appropriate care, or that same patient being sent home with a “missed” acute cardiac episode, putting them at further risk of a second adverse event.

As cardiac markers and other laboratory assays improve and are better able to detect very low analyte concentrations, calculating and understanding the impact of biological variation on test results is imperative for labs.

Attend this program and know:
- How to incorporate data on biological variation into your quality control goals
- The effects of biological variation on test precision and accuracy
- Tips for selecting and applying QC rules that will help you meet your QC goals
- How biological variation can influence the results of common laboratory tests
- Strategies for measuring reference change values (RCVs) and reducing RCVs that are too high

Program Faculty:
Alan H.B. Wu, PhD, DABCC, Chief of Clinical Chemistry and Toxicology, San Francisco General Hospital; Professor of Laboratory Medicine, University of California, San Francisco, CA

Roy Gerona, PhD, Research Scientist, Department of Laboratory Medicine, San Francisco General Hospital and the University of California, San Francisco, CA

This program is approved by AACC for 1.5 Category 1 ACCENT credit hours.

Learn how to incorporate data on biological variation into your QC program. Register today!
Improving the Efficiency of Critical Value Reporting: The Clinician/Lab Partnership

Tuesday, October 16, 2012 ~ 2:00-3:30 pm Eastern U.S. Time

Finding ways to make your critical value reporting more efficient requires a systems approach—one in which laboratorians, clinicians and others involved in the process collaborate. During this webinar, two laboratory experts explain what they’ve done in their hospital to create efficiencies in the critical value reporting process. Dr. Gordon Schiff, Associate Director of the Center for Patient Safety Research and Practice at Harvard, will provide the physician’s perspective on critical values reporting, discussing approaches you can take to find and fix the vulnerabilities in your critical value reporting systems.

Attend this program and know:
• Where to find the “failure mode” areas in your process that are prone to error
• The physician’s and lab director’s perspective on striking the appropriate balance for reporting critical values, managing the “subcritical” value, and reporting critical results from sendout tests
• The advantages and disadvantages of using clinical decision support and other electronic tools to improve critical result reporting
• How current regulations and accreditation requirements affect the way labs build their critical value reporting processes
• Strategies for measuring the effectiveness of your critical value reporting system and improving its efficiency

Program Faculty:
Gordon Schiff, MD, Associate Director, Center for Patient Safety Research and Practice; Internist, Division of General Internal Medicine, Brigham and Women’s Hospital; and Associate Professor of Medicine, Harvard Medical School, Boston, MA

Corinne R. Fantz, PhD, Co-director of the Core Laboratory, Emory Crawford Long Hospital, Director of Point-of-Care, Emory Medical Laboratories, and Associate Professor, Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA

Crystal Evans, MT(ASCP), Regulatory Coordinator, Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA

This program is approved by AACC for 1.5 Category 1 ACCENT credit hours.

Learn what you can do to make the process of critical value reporting work better for your lab and your clinicians. Register today!

TO REGISTER
Go to www.aacc.org and under “Events” select “Conferences and Events” and choose this webinar.
Clinical Chemistry

SPECIAL ISSUE

Conquering Cancer in Our Lifetime: New Diagnostic and Therapeutic Trends

Topics Include:

• Discovery and validation of novel biomarkers for early diagnosis, prognosis, subclassification, and monitoring of cancer therapies

• Role of cancer genomics, proteomics, and epigenetics in personalized medicine

• Mechanisms of cancer metastasis and the tumor microenvironment

• The cancer stem cell hypothesis and its application to diagnostics and therapeutics

• Circulating cancer cells, circulating free DNA, and micro-RNAs

Don’t miss this exciting issue!
Available January 2013!
Clinical labs now have a new option for quality control (QC) compliance programs based on risk management principles.

Risk management principles can improve laboratories’ QC programs by evaluating regulatory requirements, information provided by the manufacturer, information pertaining to the laboratory environment, and medical requirements for the test result. The result is a QC plan designed specifically for the particular combination of measuring system, laboratory environment, and clinical application.

In this program you will hear from CLSI guideline developers and world leaders in the field of QC. Through case studies they will share with you how they have implemented effective QC plans using risk management principles to improve the practice and safety of laboratory medicine.

After attending you will be able to:

- Describe the CLSI document EP23 and understand risk management’s role in QC
- Develop a QC plan for moderate complexity POCT and central lab-based tests
- Identify benchmarks for monitoring the effectiveness of a QC plan after implementation
- Use EP23 to refine an existing QC plan for a testing process not performing up to expectations

The Experts:

Valerie Ng, MD, PhD, Immediate Past Chief, ACMC Medical Staff; Chair, Laboratory Medicine & Pathology; Director, Clinical Laboratory, Alameda County Medical Center/Highland General Hospital, Oakland, CA

James H Nichols, PhD, Professor of Pathology, Tufts University School of Medicine; Medical Director, Clinical Chemistry, Baystate Health, Springfield, MA; Chairholder, CLSI EP23 Document Development Committee

Curtis Parvin, PhD, Manager, Advanced Statistical Research, Bio-Rad Laboratories, Plano, TX

This program is approved by AACC for 1.5 Category 1 ACCENT credit hours, and is supported by Bio-Rad Laboratories.

TO REGISTER
Go to www.aacc.org and under “Events” select “Conference and Event Calendar.”
Quick Guide to Renal Disease Testing

George A. Fritsma

2011, 76 pages, spiral binding
ISBN 9781594251252
Product # 6654
Price only $20; AACC Member $16

The time-honored “routine” urinalysis test is perhaps the humblest of laboratory assays, yet it provides a wealth of renal and metabolic information when appropriately performed and applied. Likewise, creatinine clearance, urea, glomerular filtration rate, and osmolality assays generate irreplaceable results.

The Quick Guide to Renal Disease Testing assists physicians, nurses, physician assistants, nurse practitioners, clinical laboratory scientists, and office personnel to properly collect, manage, and analyze urine and to apply and perform renal function tests. The Guide is a useful teaching reference for fellows, residents, and students, and is a quick-access reference for practitioners who order, collect, perform, or interpret urinalysis and renal disease laboratory tests.

The author is a member of the University of Alabama (UAB) Department of Pathology Division of Laboratory Medicine. The Guide arose from experiences in teaching clinical laboratory science students and practitioners, medical students, residents, fellows, and physicians at the UAB University Hospital. AACC Press and UAB make no warranties concerning contents of the Guide.

Available Now from AACC Press!

HOW TO ORDER

ONLINE:
http://www.aacc.org
and click on the AACC Store link

CALL:
(800) 892-1400
or (202) 857-0717

FAX:
(202) 887-5093

MAIL:
AACC Customer Service
1850 K Street NW, Suite 625
Washington, DC 20006

www.aacc.org
Download the free Clinical Chemistry App today!

The Clinical Chemistry Trainee Council

It’s even easier to be a part of it!
Sign up for free with our new one-step registration at trainee council.org

Now available in español at trainee council.org/spanish

Even more content –
- Pearls of Laboratory Medicine
- CouncilChat
- Podcasts
- Webcasts
- Q&As
Need some additional continuing education credit to meet your professional licensure requirements?

(ACCENT® or CME)

You can do this by reading designated articles in Clinical Chemistry.

For more information, go to www.aacc.org/ccj/accent/

AACC Mailing Lists Are Available For:
- Access To Members
- Access To Subscriber
- Access To Meeting Attendees

AACC Mailing Lists Provide:
- An Accurate Listing of Decision Makers in the Clinical Laboratory Field
- Current and Important Information That’s Essential to Your Marketing Efforts

Call or Fax:
American Association for Clinical Chemistry, Inc.
1850 K Street, Suite 625 • Washington, DC 20006
1-800-892-1400 • 202-857-0717 • Fax 202-887-5093

Clinical Chemistry Reprints

Authors may order reprints of their articles by contacting
Ginger Larrimore
1-866-487-5625 or 410-943-3728

For commercial reprints, to increase your marketing visibility, contact Cadmus Reprints, Toll free
1-866-487-5625 ext. 3736 or 410-943-3736 or email: reprints2@cadmus.com

ADVERTISER

Chromsystems GmbH

Diasorin

Immundiagnostik AG

Mindray

Randox Laboratories

Siemens Healthcare

PAGE NO.

2A

16A

Cover 4

15A

7A

Cover 2
Clinical Case Study

For October 2012

A 77-Year-Old Man with a Prolonged Activated Partial Thromboplastin Time

Authors: Martin Ehrenschwender, Juergen Koessler, Kirsten Brunner, and Udo Steigerwald

Institut fuer Klinische Biochemie und Pathobiochemie mit Zentrallabor,
Universitaetsklinikum Wuerzburg, Wuerzburg, Germany

Immediate access available on:
30 September 2012 at 17:00hr GMT-8

www.clinchem.org

Sign Up to Receive Clinical Cases Free Every Month at clinchem@aacc.org

CCS is supported in part by a grant from

mindray

healthcare within reach

www.mindray.com
Innovative ideas.
Impressive results.

The worldwide leader in Vitamin D Sufficiency assays.

DiaSorin developed our first Vitamin D assay more than 25 years ago.

Our pioneering spirit continues today with the DiaSorin LIAISON® XL – a fully automated, high throughput and reliable chemiluminescent analyzer. The LIAISON® XL Analyzer measures both D$_2$ and D$_3$ for a TOTAL 25 Vitamin D result and proven sensitivity down to 4 ng/mL.

When innovation meets proven assay performance

The robust LIAISON® XL Analyzer brings your laboratory to the next level of technology to enhance proven assay performance, allowing your laboratory to:
- Achieve throughput up to 180 tests per hour
- Improve lab efficiency with long walk away time
- Manage up to 25 assays on board
- Perform no daily maintenance

Our 25 OH Vitamin D TOTAL Assay is now available on the LIAISON® XL Analyzer, with a wide menu of infectious disease assays in development.

Trust DiaSorin. The proven leader.

More than 130 million Vitamin D tests distributed worldwide.

For more information on DiaSorin products, visit www.diasorin.com or call 1-800-328-1482
Drug and alcohol abuse is a serious public health and safety issue, resulting in losses of $100 billion annually in the United States. Workplace drug testing programs have been instituted to deter employees from abusing drugs.

Written in less technical language than comparable reference books in this field, Pre-Employment Drug and Alcohol Testing: A Pocket Guide examines all topics related to testing for drug and alcohol abuse, including:

- pre-employment and workplace drug and alcohol testing programs;
- federally mandated and non-federally mandated drug testing;
- impact of prescription and non-prescription medicines on drug tests;
- impact of foods, industrial hemp products, herbal teas, and passive marijuana inhalation on drug tests;
- ways individuals try to beat the system;
- legal issues in pre-employment and workplace alcohol testing programs; and
- guidance on avoiding the sources of false-positive drug test results.

Medical professionals such as medical technologists, toxicologists, clinical chemists, and laboratory administrators, as well as human resources professionals, will find Pre-Employment Drug and Alcohol Testing: A Pocket Guide a useful reference.
The seventh edition of *Pediatric Reference Intervals* is a valuable reference providing instant and accurate reference intervals for over 250 chemistry and hematology analytes in an alphabetized, user-friendly format. New analytes to this edition include C-peptide, haptoglobin, insulin, hemoglobin A, hemoglobin A2, hemoglobin F, immature platelet fraction, and reticulocyte hemoglobin equivalent. Reference intervals for steroids, free thyroxine, and free triiodothyronine measured by tandem mass spectrometry have been added, as well as reference intervals employing new platforms such as the Abbott Architect® ci8200 and the Roche cobas® 6000 analyzer.

Since the first edition was published in 1995, *Pediatric Reference Intervals* (formerly *Pediatric Reference Ranges*) has been a must-have for clinical chemists, hematologists, pathologists, endocrinologists, and pediatricians. It enhances interpretation of patient results, allows comparison of test results using different methods, and helps optimize patient care.

Pediatric Reference Intervals provides the following information: age- and sex-related reference ranges, methodology, type of specimen, references, statistical basis, population sources, and, in most cases, SI units.
Join us in sunny Florida for the latest edition of AACC’s Lab Automation conference series. Whether you’re facing the prospect of a new installation or looking to maximize ROI on your existing capacity, our expert faculty will be on hand to discuss the tips and strategies you’ll need to keep your lab automation projects on the road to success.

Here are just a few of this year’s highlights:
- Uncovering what you don’t know: Asking the right questions when starting your lab automation project
- Planning ahead to minimize workarounds in the automated lab
- Integrating middleware and autoverification
- Unlocking the power of QC: Your key to lab excellence

Laboratories all over the world are facing many of the same challenges: integrating lab processes into an increasingly IT-focused healthcare world, improving efficiency and quality, assuring patient safety, and managing cost constraints. Attend this meeting and learn how fellow laboratorians have harnessed the power of automation to meet these challenges head on.

For more information or to register, go to the AACC web site at www.aacc.org or call AACC Customer Service at (800) 892-1400 or (202) 857-0717.

For information on corporate partnership opportunities, please contact David Sainato at AACC (dsainato@aacc.org).
AACC’s very popular High-Value Tests for High-Impact Diseases webinar series continues to offer monthly 60-minute programs featuring low-cost, high-value tests for the clinical laboratory. The next two series focus on kidney and thyroid disease and provide the information you need to help empower clinical decision making and guide patients with highly prevalent diseases avoid downstream complications and costs.

The High-Value Test series of webinars are available for purchase individually or as a discounted 3-pack by disease state.

REGISTER BY DISEASE STATE OR INDIVIDUALLY:

- **KIDNEY DISEASE SERIES:**
 - July 10 – Biomarkers for Chronic Kidney Disease: Glomerular Filtration and Progression of Kidney Disease
 - Aug 14 – Biomarkers for Chronic Kidney Disease: Urine Albumin and Multi-markers
 - Sept 11 – Biomarkers for Acute Kidney Injury: Now and the Future

- **THYROID DISEASE SERIES:**
 - Oct 9 – Perspectives in Thyroid Testing: Pros and Cons of Immunoassay and Mass Spectrometry
 - Nov 13 – Effective Laboratory Testing for Thyroid Health During Pregnancy
 - Dec 11 – Role of Clinical Lab Testing in Diagnosis and Management of Thyroid Cancer

Each of the 6 programs is approved by AACC for 1.0 Category 1 ACCENT credit hour.

Hear from world leaders in the fields of kidney and thyroid disease and understand the best practices for lab testing so that you can improve patient outcomes and decrease costs!

FOR MORE INFORMATION OR TO REGISTER
Go to www.aacc.org and select the “Events” tab at the top of the page.
Prognostic factors

Heart attack & Stroke

ADMA
SDMA
L-Arginine

Arginines regulate vasodilation via NO-production

ADMA inhibits NO-Synthase
SDMA inhibits cellular uptake
L-Arginine \[\rightarrow\] L-Citrulline + NO \[\rightarrow\] Vasodilation

Laboratory diagnostics

- **ADMAxpress ELISA**: Results in only 3 hours
- **SDMA ELISA**
- **L-Arginine ELISA**: Correlation ELISA and LC-MS/MS: \(r = 0.982 \)

Immundiagnostik AG · Stubenwald-Allee 8a · 64625 Bensheim · Germany · Phone: +49 (0) 62 51/70 19 00
Fax: +49 (0) 62 51/84 94 30 · info@Immundiagnostik.com · www.Immundiagnostik.com