QUESTIONS

1. What conditions are associated with the presence of oxalate crystals in the CSF?
2. What other simple investigation may be used to assist with diagnosis?
3. What is the likely cause for the presence of these crystals (given the patient history above)?

The answers are below.

ANSWERS

1. Oxalate crystals may occur in the CSF with ethylene glycol poisoning or primary hyperoxaluria type 1. Ethylene glycol is metabolized by alcohol dehydrogenase to form glycolic and oxalic acids.
2. Serum electrolytes and osmolality can be measured, and the anion and osmolar gaps can be calculated. Ethylene glycol poisoning is associated with an increased osmolar gap and increased anion gap metabolic acidosis (1).
3. Staff at the laboratory had used the CSF glucose tube (containing potassium oxalate, which acts as an anticoagulant) for the CSF microscopy analysis.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements:
(a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors' Disclosures or Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

Acknowledgments: We thank the Department of Anatomical Pathology and Cytology, Inkosi Albert Luthuli Central Hospital, for the kind use of their microscope.

Reference

News & Views

Colloquium on Rethinking the Future of Scientific Communication

Nader Rifai,1* Michael Keller,2 and John Sack3

The format of communicating scientific information through professional journals has changed very little since the late 19th century. Recent advances in information technology have revolutionized the search and discovery of scientific information, yet neither the migration from paper to electronic publishing nor the explosion of social media tools has substantially altered the basic format for presenting scientific findings. By comparison, the popular press has undergone a transformation to better present and relay complex information to general readers, whose expectations about how to find and use information may now be much different than they were just a few years ago. Why have scientific research journals not undergone this same transformation? As we look to the future of scientific communication, how can we take advantage of current technologies as well as those that have not yet come into existence?

To address these issues, Clinical Chemistry, Stanford University Libraries, and HighWire Press hosted a meeting on the Stanford University campus in March 2012. Nineteen editors, librarians, publishers, graduate
students, and leaders in the technology and communication industries were invited to participate. The broad range of topics discussed included means to improve access to data, approaches for better information filtering and for electronic annotation, the merits and limitations of the peer-review process, and pathways to transition from today’s static publication format to an interactive one. A unique aspect of this meeting was the participation of HighWire Press, the leading e-publishing platform, which facilitates the digital dissemination of 1696 journals, such as Science, the Journal of Biological Chemistry, the Proceedings of the National Academy of Sciences, the British Medical Journal, and Clinical Chemistry. HighWire Press and similar publishing entities have the ability to transform some of these ideas into reality and the potential to change the way that readers access and communicate scientific information. To access the executive summary of this exercise, go to: https://lib.stanford.edu/files/Colloquium.Summary.Final_.pdf.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: N. Rifai, Clinical Chemistry, AACC.
Consultant or Advisory Role: None declared.
Stock Ownership: None declared.
Honoraria: None declared.
Research Funding: None declared.
Expert Testimony: None declared.

DOI: 10.1373/clinchem.2012.190140

News & Views

English Translation of the Dutch Blood Transfusion Guideline 2011

René de Vries1 and Fred Haas2†*

chairmen, on behalf of the working group for revision of the Dutch Blood Transfusion Guideline 2011

The Dutch Blood Transfusion Guideline 2011 consists of recommendations for blood transfusion practice and the underlying arguments for these recommendations. The recommendations were created through study of the literature and the subsequent forming of opinion within a multidisciplinary working group of delegated representatives from the various professional organizations involved in blood transfusion.

The aim of the 2011 revision was to update the multidisciplinary guideline on the transfusion policy of blood and blood components from 2004 in order to promote the quality of blood transfusion and the skills of employees involved in it, with a focus on the hospital situation.

The working method consisted of evaluation of the relevance of research data published since 2003, subjects that were not discussed in the previous version, developments in the social debate, and incorporation of these matters into the new guideline. The recommendations were formulated to stimulate more uniformity in clinical thinking and action in the field of blood transfusion.

A set of internal quality indicators based on the guideline has been developed, and it is aimed at stimulating the effective and safe use of blood components.

To improve accessibility, we have implemented a search function in the Table of Contents in the PDF of the guideline document. Clicking on the desired paragraph in the Table of Contents will link the reader to the relevant paragraph. Amended and new