Complete Reagent Kits
Multilevel Calibrator Sets
Quality Controls

Analyse up to 150 drugs with one kit.

> New: Antidepressants
> New: Antiepileptics
> New: Benzodiazepines
> Neuroleptics
> Psychostimulants

Tests are comprehensively validated for all tandem-MS with sufficient sensitivity.

For safe diagnostics worldwide.

Available soon:
> Antimykotics
> Anti-HIV-drugs
> Antiarrythmics

Chromsystems GmbH · Munich · Germany
Phone: +49 89 18930-300 · Fax: +49 89 18930-399
www.chromsystems.de · mailbox@chromsystems.de

Certified according to
DIN EN ISO 9001
DIN EN ISO 13485
ISO 13485 CMDR
Information for Authors

Clinical Chemistry is published by the American Association for Clinical Chemistry (AACC). The journal welcomes contributions of original information, experimental or theoretical, that advance the science of clinical chemistry. Submissions should adhere to the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" (http://www.icmje.org/).

Manuscript Review. Manuscripts are evaluated by anonymous peer reviewers. Authors are usually notified of the disposition of a manuscript within three to four weeks of its receipt. Equal consideration is given to manuscripts in English from any country, whether or not the author is a member of the AACC.

Copyright. Manuscripts are considered with the understanding that each author has participated in the work and assumes responsibility for the content; that the authors have disclosed any potential conflicts of interest; that the same information has not been and will not be submitted for concurrent review, nor published elsewhere (other than as an abstract, preliminary report, or poster cited in the manuscript); that unique materials necessary to reproduce the results are available to readers; and that if the manuscript is accepted, copyright will be transferred to the publisher. To convey these assurances, all authors must sign the copyright form provided at acceptance.

Unpublished Work. When citing unpublished work or opinions of others, provide a permission letter from them.

Manuscript Preparation. Text: Most common word-processing software formats are accepted; Microsoft Word is preferred. Use 12-point font, 1-inch margins, and double spacing throughout. Do not use headers or footers, but do number the pages, starting with the title page as page 1. For guidance on manuscript preparation and style, consult our Information for Authors at http://www.clinchem.org/site/info_ar/info_authors.xhtml.

Images: The acceptable image file formats for print publication are TIFF (tagged image file format) and EPS (encapsulated postscript) both at 600 dpi resolution. The figures must be submitted as independent files, not embedded within a word processing document. Microsoft PowerPoint (PPT) files are also acceptable, but each file must have embedded fonts and only one image per slide, one slide per file. Verify that symbols and lettering will be legible when reduced to publication size. Figures should be redesigned or recreated if they do not appear sharp and clear on paper. Authors are advised to use our online Digital Expert evaluation tool to test print figures before submitting them.

The author will be required to bear the full cost of the preparation and publication of color illustrations, invited contributions excepted. The charge for the first color figure is $1500. Subsequent color figures or parts of figures are $500 each.

Tables: Tables should be created in a common word-processing format. Spreadsheet-generated or embedded image tables should be recreated in the word-processing document and included with the text of the manuscript.

The complete Information for Authors is available at http://www.clinchem.org/site/info_ar/info_authors.xhtml.

Clinical Chemistry (ISSN 0009-9147) is published monthly by the American Association for Clinical Chemistry, 1850 K Street, NW, Suite 625, Washington, DC 20006.

© 2012 The American Association for Clinical Chemistry

Editorial Office Address. For additional information about manuscript submission and reviewing, contact the editorial office. Telephone 202.420.7678; fax 202.833.4576; e-mail clinchem@aacc.org. Address for regular mail or courier: Clinical Chemistry, 1850 K Street, NW, Suite 625, Washington, DC 20006.

Subscriptions: Contact the AACC Subscriptions Department at 1850 K Street, NW, Suite 625, Washington, DC 20006. Telephone 800.892.1400 or 202.857.0717; fax 202.887.5093; or websites http://www.clinchem.org or http://www.aacc.org. Annual 2012 rates: Print and online institutional subscription USA $1,193, elsewhere $1,377. Individual subscription USA $361, elsewhere $558. Airmail delivery outside USA is an additional $290. Online only (no print) institutional subscription $799; individual subscription $242. Individual subscriptions are for personal use and not to be used in a library.

Reprints: Reprint order forms are mailed to authors with their page proofs. Reprints can also be ordered at any time by contacting the Cadmus Reprint Department, Telephone 1.866.487.5625 or 410.943.3728; fax 877.705.1375. Minimum reprint order is 100 copies.

Back Issues: Selected complete back volumes and single copies of current and back issues are available from AACC. Contact the Subscription Department for pricing.

Missing Copies: Claims will not be allowed (a) unless we are notified within 3 months after the issue date for domestic and Canadian subscribers, or 6 months after the issue date for foreign subscribers; (b) if notice of a recent change of address has not been received; or (c) if the reason for claim is ‘missing from files’. For claims to be processed, the subscriber’s number and exact name and address as they appear on the mailing label must be included in correspondence.

Abstracting and Indexing Services: Clinical Chemistry is covered by Abstracts Express, Analytical Abstracts, Biological Abstracts, BIOSIS, Chemical Abstracts Service, Current Awareness in Biological Sciences, Current Clinical Cancer, Current Contents/Life Sciences, Excerpta Medica/EMBASE, Index Medicus, MEDLINE, Reference Update, Research Alert, Science Citation Index, Sociedad Iberoamericana de Información Científica (SIIC) Data Bases, and ScSearch.

Disclaimers: Manuscripts published in Clinical Chemistry reflect the individual views of their authors and, in the absence of a statement to the contrary, not the views of the institutions with which the authors are affiliated. The contents of advertisements or articles are not to be construed as official statements, evaluations, or endorsements by the Editor or the American Association for Clinical Chemistry.

Advertising Inquiries: Contact Scherago International, Inc., 525 Washington Blvd., Suite 3310, Jersey City, NJ 07310. Telephone 201.653.4777; fax 201.653.5205; e-mail aacc@scherago.com; Internet http://www.scherago.com.

Copyright © 2012 The American Association for Clinical Chemistry. All rights reserved. Printed in the United States of America. Photocopying beyond that permitted by Sections 107 or 108 of the US Copyright Law is authorized by the American Association for Clinical Chemistry, for internal or personal use, provided that (a) the fee for photocopying is paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; or (b) a photocopy license has been granted by the CCC. Fees are subject to change. This consent does not extend to other kinds of copying, such as for general or external distribution, resale, advertising, promotional purposes, or for creating new collective works; for these purposes, contact the Director of Publications, AACC, 1850 K Street, NW, Suite 625, Washington, DC 20006. Telephone 202.857.0717; fax 202.833.4588, e-mail clinchem@aacc.org.

Periodicals postage paid at Washington, DC and at additional mailing offices. POSTMASTER: send address changes to Clinical Chemistry, 1850 K Street, NW, Suite 625, Washington, DC 20006.
Quick Guide to Submission

For additional article types and detailed instructions, please see our Information for Authors at http://www.clinchem.org/site/info_ar/info_authors.xhtml.

<table>
<thead>
<tr>
<th>Type of Submission*</th>
<th>Word Limit</th>
<th>Structured (S) or Unstructured (U) Abstract: Word Limit</th>
<th>Maximum Number of References</th>
<th>Total Number of Tables/Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article</td>
<td>3,500</td>
<td>S: 250</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Brief Communication</td>
<td>1,500</td>
<td>S: 250</td>
<td>20</td>
<td>1 each</td>
</tr>
<tr>
<td>Citation Classics</td>
<td>600</td>
<td>Nonapplicable</td>
<td>6</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Clinical Case Study</td>
<td>500</td>
<td>Nonapplicable</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>Nonapplicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5 questions and up to 5 points to remember</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Case Study Commentary</td>
<td>300</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Editorial</td>
<td>1,500</td>
<td>Nonapplicable</td>
<td>15</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Letters to the Editor / Reply</td>
<td>750</td>
<td>Nonapplicable</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Mini-Review</td>
<td>3,500</td>
<td>S: 250</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>Opinion</td>
<td>1,500</td>
<td>Nonapplicable</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Perspective</td>
<td>1,500</td>
<td>Nonapplicable</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Q&A</td>
<td>3,500</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
<td>Nonapplicable</td>
</tr>
<tr>
<td>Review</td>
<td>5,000</td>
<td>S: 250</td>
<td>75</td>
<td>6</td>
</tr>
<tr>
<td>What Is Your Guess?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case description</td>
<td>75</td>
<td>Nonapplicable</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3 questions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case discussion</td>
<td>75</td>
<td>Nonapplicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This chart represents common types of submissions to Clinical Chemistry.

Manuscript Formatting
- Double-spaced text, 1-inch margin, 12-point font size in Arial, Helvetica, or Times New Roman
- Numbered pages with references numbered sequentially in main text
- Title page listing title, authors (first name, middle initial, last name), each author’s affiliation during the study, corresponding author’s contact information, running title, keywords, list of any previous presentation of manuscript, and any disclaimers
- Reference list formatted according to Information for Authors with Journal abbreviations in the reference list checked against the National Center for Biotechnology Information database (http://www.ncbi.nlm.nih.gov)
- SI units used throughout manuscript according to Information for Authors

Metadata (to be entered online)
- A valid and unique e-mail for each author
- Authors’ current institution, address, telephone, and fax
- Author Disclosure Forms and Contribution Forms to be completed by each author before submission. Copyright Transfer Agreement to be completed by each author after acceptance.
- Clinical Chemistry manuscript number of any companion papers (if applicable)

Compliance with Guidelines
- A MIQE checklist is required for all studies using quantitative real-time PCR experiments; a STARD checklist is required for all studies or trials of the diagnostic accuracy or performance of a diagnostic test; a CONSORT diagram is required for all randomized and Phase III trials; a MIAME checklist is required for all studies that present data for microarray experiments.
- All studies involving human study participants must indicate that they are in compliance with the Declaration of Helsinki ethical principles for medical research involving human study participants. A statement must be included in the text that Institutional Review Board approval was obtained and written informed consent obtained from study participants.

Permissions
- Written permission from the copyright holder is required to reproduce any copyrighted material
ENTERING THE ERA OF GENOMIC MEDICINE: RESEARCH OPPORTUNITIES AND CHALLENGES

Dr. Eric Green

The Human Genome Project’s generation of a reference human genome sequence was a landmark scientific achievement of historic significance. It also signified a critical transition for the field of genomics, as the new foundation of genomic knowledge started to be used in powerful ways by researchers and clinicians to tackle increasingly complex problems in biomedicine. To exploit the opportunities provided by the human genome sequence and to ensure the productive growth of genomics as one of the most vital biomedical disciplines of the 21st century, the National Human Genome Research Institute (NHGRI) is pursuing a broad vision for genomics research beyond the Human Genome Project. This vision includes using genomic data, technologies, and insights to acquire a deeper understanding of genome function and biology as well as to uncover the genetic basis of human disease. Some of the most profound advances are being catalyzed by revolutionary new DNA sequencing technologies; these methods are producing prodigious amounts of DNA sequence data as part of studies aiming to elucidate the complexities of genome function and to unravel the genetic basis of rare and complex diseases. Together, these developments are ushering in the era of genomic medicine.

9p21 DNA VARIANTS ASSOCIATED WITH CORONARY ARTERY DISEASE RISK

Dr. Robert Roberts

Coronary Artery Disease (CAD), is preventable as shown in clinical trials whereby modifying conventional risk factors one can reduce morbidity and mortality by 30% to 40%. It has been recognized for several decades that about 50% of susceptibility for CAD is due to genetic factors. It has been postulated that coronary artery disease will be markedly attenuated, if not eliminated, in the 21st century. Thus, comprehensive prevention will have to include conventional and genetic risk. Personalized Medicine will ultimately seek to tailor prevention and treatment to that of the individual’s genetic variants. Those variants may be analyzed as DNA fragments and in other cases may be reflected by protein biomarkers circulating in the blood. A major barrier to personalized medicine, particularly for common polygenic disorders was the lack of genetic risk variants. In 2005 the technology arrived and by 2007 the first genetic risk variant for coronary artery disease, 9p21, was identified. 9p21, as a risk factor for CAD was rapidly confirmed around the world, followed by the formation of large genome-wide association studies which today have provided over 1200 genetic risk variants for over 160 diseases. For CAD there are now 36 confirmed genetic risk variants, of which over half occurs in more than 50% of the world’s population. The surprising and exciting finding for CAD is that 23 of these 36 variants act independently of known conventional risk factors for CAD (e.g., blood pressure, cholesterol). This scientific observation has significant implications:

- First, comprehensive prevention of CAD will require elucidation and prevention of these independent genetic risk factors.
- Secondly, this implies mechanisms contributing to the pathogenesis of coronary atherosclerosis which are yet to be identified.
- Thirdly, there are likely to be several targets for development of drug therapy following the elucidation of these unknown molecular pathways contributing to CAD.

9p21 will be discussed in detail as an example of a genetic risk factor that occurs in 75% of the world’s population (outside of Africa). We recently discovered that interferon alpha-21 is a biomarker that is elevated in the blood in individuals at risk for 9p21 with existing coronary artery disease. Interferon alpha-21 is likely to be one of several biomarkers that will be discovered and utilized in the future prevention and treatment of coronary artery disease.

THE ETHICS OF HUMAN TISSUES IN RESEARCH

Dr. Michael Christman, Dr. Robert Cook-Deegan, and Dr. Pilar Ossorio

Making meaning of genomic data will require analysis of tissues from many people followed over time. DNA sequencing technology is generating a flood of data in a time of unstable jurisprudence about patent rights over molecules and methods, changing norms of privacy, conflicting impulses about commercialization and financial conflict of interest, and evolving conceptions about ownership and control of data and tissues. How will we struggle through this mess of incoherent policies?

WHOLE GENOME SEQUENCING IN THE CLINICAL SETTING

Dr. Elaine Mardis

This lecture will provide an overview of new DNA sequencing technologies that are driving discovery in human disease, especially cancer. Dr. Mardis will provide fundamental concepts of these technologies and examples of their utility in the clinical diagnostic setting, much of which is originating from their use in basic science discovery. In particular, integrating data from whole genome sequencing with RNA sequencing is providing key insights for individual cancer patients in identifying therapeutic options. Several such examples will be discussed. Further, the use of these techniques for following cancer progression will be presented, as a paradigm for identifying patients who are progressing or developing therapy resistance at earlier stages than currently can be detected by clinical assays.

DIET AND CVD PREVENTION, WHERE SHOULD THE EMPHASIS BE?

Dr. Alice Lichtenstein

Dietary modification for CVD risk reduction has centered on dietary fat — type and quality. A substantial body of evidence indicates that type of fat is more important than quality of fat within current levels of total fat intake (25% of energy [E] to 35%E). Regarding type of fat, recent controversy has arisen over the value of limiting intake saturated fatty acids, historically a major target of dietary approaches to reduce CVD risk. The available data addressing this issue will be explored. Also, additional factors that should be taken into consideration when interpreting data from human intervention trials and extrapolating those data to risk reduction recommendations will be discussed. Examples of such factors include energy balance and dietary patterns.

An International Conference

- Featuring outstanding leaders in the field of cardiovascular medicine
- Two days focusing on all major areas of cardiovascular disease: prevention, diagnosis, management
- Meet and hear from leading cardiac specialists and investigators in clinical practice and the research arena.

Explore Leading-Edge Topics

- International trends in CVD
- Biomarkers in the prevention of CVD
- Genomics, proteomics and biomarkers of CVD
- Biomarkers in the diagnosis and management of CVD

Meet and Hear from World-Renowned Presenters

- **Fred Apple, PhD**
 University of Minnesota School of Medicine
- **Robert Gerszten, MD**
 Harvard Medical School
- **Torbjørn Omland, MD, PhD**
 Akershus University Hospital
- **Phillip Barter, MD**
 University of Sydney
- **Peter Libby, MD**
 Harvard Medical School
- **Kári Stefánsson, MD**
 DeCode Genetics
- **Jacques Genest, MD**
 McGill University Health Center
- **David Morrow, MD**
 Harvard Medical School
- **K. Srinath Reddy, MD**
 Public Health Foundation of India

This program is offered under the auspices of the IFCC and is co-sponsored by the Asian Pacific Federation of Clinical Biochemistry and Laboratory Medicine, Indonesian Heart Association, Japan Atherosclerosis Society, Japan Society of Clinical Chemistry, Korean Society for Laboratory Medicine, Singapore Association of Clinical Biochemists, Singapore Cardiac Society, and Taiwan Society of Cardiology.

Generous corporate funding for this program has been received from the Committee of Cardiovascular Pharmacology of the Chinese Pharmacological Society, Denka Seiken Co., Ltd., Health Diagnostic Laboratory, Inc., Randox Cardiology, Roche Diagnostics, and Siemens Healthcare.
The seventh edition of Pediatric Reference Intervals is a valuable reference providing instant and accurate reference intervals for over 250 chemistry and hematology analytes in an alphabetized, user-friendly format. Changes to this edition include:

- New analytes in the Chemistry section, including C-peptide, haptoglobin, and insulin;
- New analytes in the Hematology section, including hemoglobin A, hemoglobin A2, hemoglobin F, immature platelet fraction, and reticulocyte hemoglobin equivalent;
- Addition of reference intervals for steroids, free thyroxine, and free triiodothyronine measured by tandem mass spectrometry; and
- Addition of reference intervals employing new platforms such as the Abbott Architect® ci8200 and the Roche cobas® 6000 analyzer.

Pediatric Reference Intervals provides the following information:

- Age- and sex-related reference ranges;
- Methodology;
- Type of specimen;
- References;
- Statistical basis;
- Population sources; and
- In most cases, SI units.

How to Order:

ONLINE: http://www.aacc.org and click on the AACC Store link
CALL: (800) 892-1400 or (202) 887-0717
FAX: (202) 887-5093
MAIL: AACC Customer Service
1850 K Street NW, Suite 625
Washington, DC 20006
Presents a Webinar

Tuesday, August 28, 2012 ~ 2:00-3:30 pm Eastern U.S. Time

For the first time in history, ACS and USPSTF have released consistent guidelines for cervical cancer screening. Previously, the USPSTF had indicated that the evidence was insufficient for it to recommend the combined use of cervical cytology and high-risk human papillomavirus (HPV) DNA testing (“co-testing”). Now, both groups include recommendations for co-testing in women age 30–65 years, stating that they should either be screened by cytology every 3 years or by co-testing every 5 years.

The groups’ willingness to lengthen the time between screenings when co-testing is performed speaks to the medical community’s confidence in today’s HPV testing technologies. A variety of molecular assays are now available for detecting HPV, and labs performing these assays in-house must determine which technology best fits their HPV testing needs.

During this program, experts will address:

- What the current guidelines for cervical cancer screening are and how they predict risk
- The major applications of HPV testing and the role it plays in these guidelines
- What it means to have a “clinically validated” HPV test
- The advantages and limitations of using today’s FDA-cleared HPV testing technologies
- Why traditional method validation protocols won’t work with new HPV testing technologies

Program Faculty:

Mark H. Stoler, MD, Professor of Pathology, Cytology and Gynecology; Associate Director of Surgical Pathology and Cytopathology; and Director, Gynecological Pathology Fellowship Program, University of Virginia, Charlottesville, VA

Frederick S. Nolte, PhD, Professor, Director of Clinical Laboratories, and Director of Molecular Pathology, Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC

This program is approved by AACC for 1.5 Category 1 ACCENT credit hours, and supported by an educational grant from Roche Diagnostics.

Stay current with the latest developments in HPV testing. Register today!

TO REGISTER

Go to www.aacc.org and under “Events” select “Conferences and Events” and choose this webinar. Once on the webinar page, click “Register” to register online or print a registration form.
Everything depends on having a partner you can trust

RELY ON AB SCIEX FOR PROVEN LC/MS/MS SOLUTIONS

The limitations of conventional techniques are accelerating the adoption of mass spectrometry as a smart alternative for scores of clinical research applications involving trace level quantitation of multiple compounds such as endocrines, biomarkers, drugs of abuse and many more.

If you’re ready to break through, look no further than the industry leader. With 25-years of experience delivering high-performance systems, software, and support, AB SCIEX is a partner you can trust to integrate easy-to-use mass spec technology into your lab’s day-to-day research routine. Save time, cut costs, and solve analytical issues with greater confidence and better results. Isn’t it time to break through the limits?

For more information, visit www.absciex.com/clinical-jcc
A Man with Abdominal Pain: Enough Evidence for Surgery?

Authors: Nils Bolstad,1,4 Airazat M. Kazaryan,2,4 Mona-Elisabeth Revheim,3,4 Sonia Distante,5 Kjersti Johnsrud,3 David J. Warren,1 Kjell Nustad,1 and Bjørn Edwin2,4

1 Department of Medical Biochemistry, Oslo University Hospital - Radiumhospitalet, Oslo, Norway
2 Interventional Centre and Department of Surgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway
3 Department of Nuclear Medicine, Oslo University Hospital - Rikshospitalet, Oslo, Norway
4 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
5 Department of Medical Biochemistry, Oslo University Hospital - Rikshospitalet, Oslo, Norway
6 Department of Surgery, Vestre Viken Hospital Trust, Drammen, Norway

Immediate access available on: 31 July 2012 at 17:00hr GMT-8

www.clinchem.org

Sign Up to Receive Clinical Cases Free Every Month at clinchem@aacc.org

CCS is supported in part by a grant from

www.mindray.com
The Clinical Chemistry Trainee Council

NEW! It’s even easier to be a part of it!
Sign up for free with our new one-step registration at traineecouncil.org

Now available in español at traineecouncil.org/spanish

Even more content –
- Pearls of Laboratory Medicine
- CouncilChat
- Podcasts
- Webcasts
- Q&As

AACC and AACC CPOCT Division Present
Promoting a Culture of Quality and Consistency in Critical and Point-of-Care Testing

24th International Symposium October 4-6, 2012
Hilton Prague Hotel Prague, The Czech Republic

Join the world’s leading clinicians, POCT practitioners, and technology developers.

Explore a range of timely issues:
- Benefits and Outcomes of Tight Glycemic Protocols in Critical Care Patients
- Understanding the Sources of Error and Limitations in Point-of-Care Testing
- Point-of-Care Testing Beyond the Hospital
- Developing Effective Strategies to Achieve Quality POCT Results
- New Technologies in Point-of-Care Testing

Hear keynote speaker Maurice O’Kane, MD of Altnagelvin Hospital in Londonderry, UK discuss the current and emerging quality perspectives in point-of-care testing.

Network with colleagues and speakers at the opening reception, during dedicated viewing of the posters, and at the awards dinner and visit one of Europe’s most beautiful and vibrant cities.

Early registration discounts end August 10, 2012
See full program at http://www.aacc.org/events/meetings

AACC, 1850 K Street, Suite 625, Washington, DC 20006-2213 Email: custserv@aacc.org Web: www.aacc.org
MULTIPLEX TESTS - PERSONALIZED RESULTS

The ‘Gold Standard’ in multiplex testing

Randox is committed to providing patient focused solutions to diagnose disease and aid in therapy selection and dosing decisions

Randox is improving patient care with its innovative biochip immunoassay analyzers and constantly expanding menu of multiplex IVD tests that deliver fast, accurate results

Highly accurate testing • Small sample volume • Cost consolidation
Multiple sample types • Result traceability • Extensive Quality Control features

Wide Test Menu
Adhesion Molecules • Cardiac • Cerebral • Cytokines • Drugs of Abuse • Endocrine • Fertility
Kras/Braf/PIK3CA* • Metabolic Syndrome • Respiratory Pathogens • STIs
Tumor Markers • Thyroid

* PIK3CA for research use only

Deliver reliable diagnostic results, vital to the clinician and the patient, with Randox

Randox Laboratories US Limited
515 Industrial Boulevard, Kearneysville, West Virginia 25430, USA
T +1 304 728 2890 Toll Free 8664 Randox F +1 304 728 1890 Toll Free 8664 Randox
E marketing@randox.com I www.randox.com
Clinical labs now have a new option for quality control (QC) compliance programs based on risk management principles.

Risk management principles can improve laboratories’ QC programs by evaluating regulatory requirements, information provided by the manufacturer, information pertaining to the laboratory environment, and medical requirements for the test result. The result is a QC plan designed specifically for the particular combination of measuring system, laboratory environment, and clinical application.

In this program you will hear from CLSI guideline developers and world leaders in the field of QC. Through case studies they will share with you how they have implemented effective QC plans using risk management principles to improve the practice and safety of laboratory medicine.

After attending you will be able to:
- Describe the CLSI document EP23 and understand risk management’s role in QC
- Develop a QC plan for moderate complexity POCT and central lab-based tests
- Identify benchmarks for monitoring the effectiveness of a QC plan after implementation
- Use EP23 to refine an existing QC plan for a testing process not performing up to expectations

The Experts:
Valerie Ng, MD, PhD, Immediate Past Chief, ACMC Medical Staff; Chair, Laboratory Medicine & Pathology; Director, Clinical Laboratory, Alameda County Medical Center/Highland General Hospital, Oakland, CA

James H Nichols, PhD, Professor of Pathology, Tufts University School of Medicine; Medical Director, Clinical Chemistry, Baystate Health, Springfield, MA; Chairholder, CLSI EP23 Document Development Committee

Curtis Parvin, PhD, Manager, Advanced Statistical Research, Bio-Rad Laboratories, Plano, TX

This program is approved by AACC for 1.5 Category 1 ACCENT credit hours, and is supported by Bio-Rad Laboratories.

TO REGISTER
Go to www.aacc.org and under “Events” select “Conference and Event Calendar.”
Clinical Chemistry is pleased to announce a special upcoming theme issue on Cancer edited by Drs. Eleftherios P. Diamandis, Robert C. Bast and Carlos Lopez-Otin titled, “Conquering Cancer in Our Lifetime: New Diagnostic and Therapeutic Trends.” Clinical Chemistry, published by the American Association for Clinical Chemistry, is the most highly cited forum for peer-reviewed, original research in the fields of clinical chemistry and laboratory medicine.

The purpose of this issue is to highlight recent advances in diagnosis and therapy of cancer and will include diverse themes such as cancer genomics, proteomics, chemoprevention, early diagnosis, biomarker discovery and validation, drug resistance, cancer stem cells, cancer epigenetics, antiangiogenic therapies, mechanisms of cancer metastasis, and the tumor microenvironment.

Clinical Chemistry invites authors to submit original articles related to cancer to be considered for publication in this special issue. Manuscripts are most likely to be favorably received if they address novel technologies to diagnose, treat or prevent cancer or its complications.

Potential topics of interest include:

- Discovery and validation on novel biomarkers for early diagnosis, prognosis, and monitoring of cancer therapies
- Role of cancer genomics, proteomics, and epigenetics in personalized medicine
- Mechanisms of cancer metastasis and the tumor microenvironment
- Cancer chemoprevention
- Drug resistance and how it can be overcome
- The cancer stem cell hypothesis and its application to diagnostics and therapeutics
- Cancer subclassification by using genomics, proteomics, metabolomics, and other omics
- Novel approaches for therapeutics, diagnosis and monitoring, such as circulating cancer cells, and circulating free DNA and micro-RNAs

Be a part of this exciting issue. Submit now!

Submissions must be received through our online submission system at http://submit.clinchem.org. We welcome submissions after July 1, 2012, but cannot guarantee the inclusion of late submissions for the Special Issue. Your cover letter should express your interest in submitting your paper for consideration for the Cancer theme issue. Journal guidelines for submission apply as described in the Information for Authors on the submission website.
AACC’s very popular High-Value Tests for High-Impact Diseases webinar series continues to offer monthly 60-minute programs featuring low-cost, high-value tests for the clinical laboratory. The next two series focus on kidney and thyroid disease and provide the information you need to help empower clinical decision making and guide patients with highly prevalent diseases avoid downstream complications and costs.

The High-Value Test series of webinars are available for purchase individually or as a discounted 3-pack by disease state.

REGISTER BY DISEASE STATE OR INDIVIDUALLY:

KIDNEY DISEASE SERIES:
- July 10 – Biomarkers for Chronic Kidney Disease: Glomerular Filtration and Progression of Kidney Disease
- Aug 14 – Biomarkers for Chronic Kidney Disease: Urine Albumin and Multi-markers
- Sept 11 – Biomarkers for Acute Kidney Injury: Now and the Future

THYROID DISEASE SERIES:
- Oct 9 – Perspectives in Thyroid Testing: Pros and Cons of Immunoassay and Mass Spectrometry
- Nov 13 – Effective Laboratory Testing for Thyroid Health During Pregnancy
- Dec 11 – Role of Clinical Lab Testing in Diagnosis and Management of Thyroid Cancer

Each of the 6 programs is approved by AACC for 1.0 Category 1 ACCENT credit hour.

Hear from world leaders in the fields of kidney and thyroid disease and understand the best practices for lab testing so that you can improve patient outcomes and decrease costs!

FOR MORE INFORMATION OR TO REGISTER
Go to www.aacc.org and select the “Events” tab at the top of the page.
Testing for vitamin D has always been a complicated process. Now labs can test for total 25(OH) vitamin D (D$_3$ and D$_2$) in 18 minutes or less on the ADVIA Centaur® family of instruments — quickly, accurately, and with full automation.

This new assay arrives just in time. Demand for vitamin D testing continues to grow, prompted by emerging research on the importance of vitamin D to wellness.

With the new Siemens equimolar Vitamin D Total assay, testing is within the reach of labs of all sizes. That means physicians and patients can benefit from getting their vitamin D testing results faster. And it means labs will be better prepared to meet today’s demands — and tomorrow’s.

Learn more about how the new ADVIA Centaur Vitamin D Total assay is a viable solution for your lab by downloading educational white papers at www.siemens.com/vitamindtotal.
There’s Always Another Way

Consolidate your single analyte infectious disease controls with Bio-Rad third party multi-analyte controls. It’s a better way.

No need to settle for single analyte, reagent kit quality controls. There’s a more convenient and cost effective way. Bio-Rad offers an extensive line of third party infectious disease controls that allow for substantial product consolidation. A laboratory using a typical automated instrument for hepatitis testing can reduce the number of control products it uses from 12 to 4. And with new, increased shelf life for many of our infectious disease control products, even greater savings and convenience can be yours.

When using Bio-Rad infectious disease controls with our powerful Unity® software, you join more than 17,000 laboratories worldwide that already benefit from Unity’s superior analytical capabilities and the most comprehensive interlaboratory comparison.

Visit us at our AACC Booth #1101
1,25-(OH)$_2$-Vitamin D$_3$/D$_2$

ID ImmunoTube®

Virtually no ion suppression
Complete removal of interfering matrix components

Easy ID ImmunoTube® extraction
No derivatization, precipitation or SPE-extraction

Flexible use on high-end instruments
- ThermoScientific (TSQ Quantum Vantage Triple Quadropole)
- AB SCIEX (Q Trap® 5500 LC-MS/MS with Turbo V™ Source)
- Waters (Quattro Premier XE and Xevo TQS)

Published & market proven

Lembcke et al., 2011: "Fast, robust and reliable method for the determination of 1,25(OH)$_2$ vitamin D."
[AB SCIEX Poster, ASMS conference, June 5-9]

Yuan et al., 2011: "An LC-MS/MS-based method [...] suitable for clinical testing. Both D$_3$ and D$_2$ were quantified with high selectivity and sensitivity."

He et al., 2011: "This off-line purification approach is very specific and robust. No interference or ion suppression was observed."
[ThermoScientific Poster, ASMS conference, June 5-9]

Published & market proven