Clinical Implications of a Recent Adjustment to the High-Sensitivity Cardiac Troponin T Assay: User Beware

To the Editor:

Roche Diagnostics recently issued a technical bulletin calling for an adjustment to the calibration curve for the Elecsys Troponin T hs and Elecsys Troponin T hs STAT assays. Although this bulletin was disseminated widely in some countries, it was less widely distributed in others. The Roche high-sensitivity (hs) assays are in clinical use worldwide except within the US, where they are used for research but have not yet been cleared by the Food and Drug Administration. Roche has characterized this action as a “minor adjustment” to the low-end standardization of the Troponin T hs assays in order to return to the original assay specifications. The new revised lots (numbers 167345 and 167650) yield measurable cardiac troponin T concentrations in hs assays in a greater proportion of patient samples for which the concentrations were undetectable with previous lots [163704 (Troponin T hs) and 164773 (Troponin T hs STAT)] and older lots (6 lots total). Specifically, Roche has indicated that the new lots will produce higher recoveries at low concentrations (3–20 ng/L) and produce a shift upward—as much as +7 ng/L at concentrations of 3–8 ng/L and up to +5 ng/L at concentrations of 8–20 ng/L. Unfortunately, no correlation studies that compare earlier lots against the new lots are available. Thus, no information is available regarding what shifts may have occurred above the 20-ng/L value.

The implications of this calibration reformulation and the questions it raises are many. First, what will be the effect of the reformulation on the well-established 99th percentile value of 14 ng/L that has consistently been reported in the literature? Second, what percentage increase in detectable results will be seen among patients presenting for emergency care? Third, how does this change affect findings from the hundreds of published studies that have used both the 99th percentile value and 8 changes over time to examine diagnostic accuracy, and how does it change the findings for risk stratification of acute coronary syndrome patients and apparently healthy patients? Fourth, what mechanisms are in place to alleviate customers’ concerns that similar product adjustments for this hs assay that have substantial downstream implications for patient triage and management will not occur in the future? Fifth, does the new reformulated calibration curve permit recalculation of the concentrations that have already been published in the current literature? The answers to these questions are essential for customers trying to interpret the relationship of previous data to new data.

The occurrence of this problem is not surprising, considering the challenges presented by the quality assurance of hs assays. We have been perplexed by the fact that early data suggested that most healthy individuals have detectable values. In the PEACE (Prevention of Events with Angiotensin Converting Enzyme Inhibition) study (1), 97.7% of participants had a value above the limit of detection, which was 1 pg/mL (1 ng/L) at the time with a precommercial assay. In the original validation by Giannitsis et al. (2), 80% of putatively healthy participants had values above the limit of the blank. By the time of the large international cooperative study, however, only 57% of putative healthy study participants had values above the limit of the blank, and only 32% had values above the limit of detection (3). This percentage fell even further, with only 25% above this limit in a community-based study (4). In addition, the original diagnostic study (1) found that the hs assay for cardiac troponin T did not detect more myocardial infarctions than conventional assays (5). Was this decrease due to the change now reported by Roche, or did some other change occur very early in the assay?

We believe that these findings have major implications for patient
Letters to the Editor

Care. We urge that in addition to correcting the lot issues it has defined, Roche reevaluate (at a minimum) subsets of the key research sample sets to ensure that: (a) there is no need to recalculate the 99th percentile value that is the cornerstone of the Universal Definition of Myocardial Infarction, and (b) the data upon which the metrics proposed for the use of this assay are correct. Such a reevaluation should be conducted immediately with appropriate clarifications, as necessary, in the journals in which the index reports were published. We strongly encourage editors of all journals to ensure that all submitted manuscripts in this area identify the lot of reagent used and that authors be able to document that the presented data reflect the reformulated, new-calibration lots.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: F.S. Apple, Clinical Chemistry, AACC.

Consultant or Advisory Role: F.S. Apple, Instrumentation Laboratory, T2 Biosystems, and Alere; A.S. Jaffe, Beckman Coulter, Ortho Clinical Diagnostics, Alere, Abbott Laboratories, Critical Diagnostics, Amgen, and Roche.

Stock Ownership: None declared.

Honorary: F.S. Apple, Instrumentation Laboratory, T2 Biosystems, and Beckman Coulter.

Research Funding: F.S. Apple, large majority of manufacturers of cardiac troponin assays, including Roche Diagnostics.

Expert Testimony: None declared.

Patents: None declared.

Other Remuneration: A.S. Jaffe, Radiometer.

References


Fred S. Apple1,2* Allan S. Jaffe3

1 Hennepin County Medical Center Department of Laboratory Medicine and Pathology and 2 University of Minnesota Department of Laboratory Medicine and Pathology, Minneapolis MN

3 Mayo Clinic Rochester, MN

*Address correspondence to this author at: Clinical Laboratories P4, Hennepin County Medical Center, 701 Park Ave, Minneapolis, MN 55415 Fax 612-904-4229 E-mail apple004@umn.edu

Previously published online at DOI: 10.1373/chlmech.2012.194985

CH-8 Phenotype in Steroid 21-Hydroxylase Deficiency: Fact or Fancy?

To the Editor:
The defective CYP21A21 (cytochrome P450, family 21, subfamily A, polypeptide 2) genes downstream of the TNXB (tenascin XB) gene in congenital adrenal hyperplasia (CAH)2 fall into 3 categories: (a) small-scale conversions from the CYP21A1P (cytochrome P450, family 21, subfamily A, polypeptide 1 pseudogene) gene, (b) spontaneous mutations, and (c) chimeric RCCX modules that include the chimeric CYP21A1P/CYP21A2 genes and chimeric genes of TNXA (tenascin XA pseudogene) and TNXB (1). Most of the CYP21A2 mutations of the 15 loci identified thus far are due to small-scale conversions from CYP21A1P during both meiosis and mitosis (2). These mutations account for approximately 70% to 80% of CAH cases. These 15 mutational loci include nucleotide (nt) –126 (C>T), nt –113 (G>A), nt –110 (>C), nt –103 (>A), nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and V236E, and M239K), V281L, V306I, F306L, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L.

A, polypeptide 2) genes downstream of the TNXB (tenascin XB) gene in congenital adrenal hyperplasia (CAH)2 fall into 3 categories: (a) small-scale conversions from the CYP21A1P (cytochrome P450, family 21, subfamily A, polypeptide 1 pseudogene) gene, (b) spontaneous mutations, and (c) chimeric RCCX modules that include the chimeric CYP21A1P/CYP21A2 genes and chimeric genes of TNXA (tenascin XA pseudogene) and TNXB (1). Most of the CYP21A2 mutations of the 15 loci identified thus far are due to small-scale conversions from CYP21A1P during both meiosis and mitosis (2). These mutations account for approximately 70% to 80% of CAH cases. These 15 mutational loci include nucleotide (nt) –126 (C>T), nt –113 (G>A), nt –110 (>C), nt –103 (>A), nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L.

CH-8 Phenotype in Steroid 21-Hydroxylase Deficiency: Fact or Fancy?

To the Editor:
The defective CYP21A21 (cytochrome P450, family 21, subfamily A, polypeptide 2) genes downstream of the TNXB (tenascin XB) gene in congenital adrenal hyperplasia (CAH)2 fall into 3 categories: (a) small-scale conversions from the CYP21A1P (cytochrome P450, family 21, subfamily A, polypeptide 1 pseudogene) gene, (b) spontaneous mutations, and (c) chimeric RCCX modules that include the chimeric CYP21A1P/CYP21A2 genes and chimeric genes of TNXA (tenascin XA pseudogene) and TNXB (1). Most of the CYP21A2 mutations of the 15 loci identified thus far are due to small-scale conversions from CYP21A1P during both meiosis and mitosis (2). These mutations account for approximately 70% to 80% of CAH cases. These 15 mutational loci include nucleotide (nt) –126 (C>T), nt –113 (G>A), nt –110 (>C), nt –103 (>A), nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L, nt 655 (A>C), nt 707–714del, nt 712N, cluster E6 (1236N, 1236E, and M239K), V281L, V306I, F306I, and P301L.