mean peak BNPs p concentration was lower in this group. Again, the differences did not reach statistical significance by ANOVA (hsTnT, \(P = 0.104 \); BNPs p, \(P = 0.290 \); NT-proBNP, \(P = 0.324 \).

There was a statistically significant relationship between the absolute change (\(\delta \)) in the hsTnT concentration and the cumulative dobutamine dose (\(r^2 = 0.26; P = 0.015 \)) in the CAD patients. There was no corresponding correlation with \(\delta \) BNPs p or \(\delta \) hsTnT in the CAD group (\(r^2 = -0.028; P = 0.562 \)), and there was no significant correlation between \(\delta \) NT-proBNP and \(\delta \) BNPs p (\(r^2 = 0.083; P = 0.317 \)).

To our knowledge, this study is the first to demonstrate the patterns of release of TnT with a high-sensitivity assay during DSE testing. Our data suggest stepwise increments in DSE-induced increases in plasma hsTnT and BNPs p in healthy volunteers and CAD patients. CAD patients with inducible ischemia also received the highest dobutamine doses, a finding that must be considered. In contrast with hsTnT and NT-proBNP, the release kinetics for BNPs p indicate that it is a much more dynamic marker. The reasons for the attenuated release of BNPs p in individuals with echo-cardiographically positive test results are unclear. In view of the small sample size, this observation requires verification. If genuine, it is possible that BNPs p release mechanisms are more susceptible than troponin to ischemic preconditioning, or there may be a depletable pool of this peptide.

Given the results of this pilot study, we propose that both exaggerated cardiac troponin release and attenuated BNPs p release in patients with inducible ischemia during DSE warrant further investigation with a larger sample size—and with longer follow-up—to establish whether specific threshold biomarker responses correspond to worse ischemia and/or a worse prognosis.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: None declared.
Consultant or Advisory Role: None declared.
Stock Ownership: None declared.
Honorary: None declared.
Research Funding: The Canterbury Medical Research Foundation (grant 10/094). M. Sirwardena, National Heart Research Council of New Zealand (grant 1422); C.I. Pemberton, Health Research Council of New Zealand (grant 07/114).

Expert Testimony: None declared.

Acknowledgments: A report on this study was previously presented at the Cardiac Society of Australia and New Zealand (CSANZ) 2011, Perth, Australia.

References

Maithri Sirwardena*
Vicki Campbell
A. Mark Richards
Christopher J. Pemberton

Christchurch Cardioendocrine Research Group
Department of Medicine
University of Otago
Christchurch, New Zealand

*Address correspondence to this author at:
Christchurch Cardioendocrine Research Group
Department of Medicine
2 Riccarton Ave.
University of Otago
P.O. Box 4345
Christchurch 8140, New Zealand
Fax 64-364-0818
E-mail maithri.sirwardena@gmail.com

Previously published online at DOI: 10.1373/clinchem.2012.187682

Reference Intervals for and Validation of Recalibrated Immunoassays for Trypsinogen-1 and Trypsinogen-2

To the Editor:

Serum trypsinogen assays are used as diagnostic and prognostic tools for cystic fibrosis and acute pancreatitis (AP) (1, 2). Calibrator stability is a challenge in these assays, because trypsinogen readily auto-activates and subsequently autodegrades. Furthermore, the reference
intervals described thus far have been based on samples from a limited number of individuals (1,3). We recalibrated a new immunoassay for trypsinogen-2 and a previously described assay for trypsinogen-1 (1) with stable calibrators (2,4) and report reference intervals for these 2 analytes in serum.

We have produced new monoclonal antibodies and developed a time-resolved immunofluorometric assay for trypsinogen-2, as previously described (1) and report reference intervals for these 2 analytes in serum.

Trypsinogen-2 was stable in serum for at least 7 days at room temperature (CV, 8%–15%), at least 5 weeks at 4 °C (CV, 7%–17%), and at least 6 weeks at −20 °C (CV, 8%–13%). The immunoreactivity did not decrease after 6 freeze–thaw cycles repeated at 1-week intervals (CV, 7%–13%). Recombinant trypsinogen-2 calibrators were stable in assay buffer for 28 days at 4 °C and −20 °C (CVs, 8%–17% and 7%–14%, respectively).

The effect of a breakfast meal on serum trypsinogen-1 and -2 concentrations was studied in 21 volunteers among the laboratory staff (1 man, 20 women). Blood samples were drawn within 1 week before and after a regular Finnish breakfast that consists of some of these: coffee, tea, milk, juice, bread, cheese, ham, porridge, cereals, or yogurt. The breakfast had no effect on the trypsinogen-2 concentration, but trypsinogen-1 concentrations were slightly higher (5.5%; P = 0.0349, paired t-test).

Reference intervals were established with serum samples from 197 healthy volunteers. Samples from men and women were separately divided into age groups comprising 19 to 27 participants. In the age group 18–30 years, the concentrations of trypsinogen-1—but not of trypsinogen-2—were significantly lower in men than in women (P = 0.0015, Mann–Whitney U-test; Table 1). Trypsinogen-2 concentrations were significantly lower in men and women 18–30 years of age than in older (31–50 years) volunteers (P = 0.0354). Despite this finding, we combined sex and age groups for calculating reference intervals. In adults, the central 95% reference interval (5) was higher for trypsinogen-1 (13.0–46.2 μg/L) than for trypsinogen-2 (3.8–17.4 μg/L). The trypsinogen-1 concentrations are in line with those obtained in previous studies (1,3); however, serum trypsinogen-2 concentrations reported for various assays have shown greater variation (1,3). The form of the trypsinogen-2 calibrator used is the most likely source of these differences.

Table 1. Trypsinogen-1 and -2 concentrations in serum from healthy volunteers.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Trypsinogen-1</th>
<th>Trypsinogen-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median, μg/L</td>
<td>Range, μg/L</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–30 years</td>
<td>27</td>
<td>19.6</td>
</tr>
<tr>
<td>31–50 years</td>
<td>26</td>
<td>22.9</td>
</tr>
<tr>
<td>51–70 years</td>
<td>26</td>
<td>25.0</td>
</tr>
<tr>
<td>>70 years</td>
<td>20</td>
<td>26.4</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–30 years</td>
<td>27</td>
<td>25.3</td>
</tr>
<tr>
<td>31–50 years</td>
<td>25</td>
<td>24.9</td>
</tr>
<tr>
<td>51–70 years</td>
<td>25</td>
<td>27.9</td>
</tr>
<tr>
<td>>70 years</td>
<td>21</td>
<td>26.8</td>
</tr>
</tbody>
</table>
We also analyzed trypsinogen-1 and -2 immunoreactivities in serum samples from 40 patients with mild AP and 22 patients with severe AP (2). The median trypsinogen-1 concentration for patients with mild AP was 253 μg/L (95% CI, 105–361 μg/L), whereas that for trypsinogen-2 was 522 μg/L (95% CI, 377–1047 μg/L). For patients with severe AP, the corresponding median concentrations were 364 μg/L (95% CI, 187–523 μg/L) and 1074 μg/L (95% CI, 661–1261 μg/L). The area under the ROC curve for differentiating between AP (n = 62) and healthy volunteers (n = 197) was 0.93 for trypsinogen-1 and 1.00 for trypsinogen-2. The values for the area under the curve for differentiating between mild and severe disease were 0.65 and 0.68, respectively.

In conclusion, we produced stable calibrators and used them to calibrate immunoassays for trypsinogen-1 and trypsinogen-2 and established serum reference intervals for these 2 analytes. The reference intervals for trypsinogen-2 were lower than for our earlier method, which used calibrators prepared from tumor-associated trypsinogen-2 (1). Our limited study of patients with AP confirms that trypsinogen-2 is a diagnostically sensitive and specific marker for the diagnosis of AP. It will be important to determine the commutability of these calibrators in other assays.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: None declared.
Consultant or Advisory Role: None declared.
Stock Ownership: None declared.
Honoraria: None declared.
Research Funding: None declared.
Expert Testimony: Grants from the Helsinki University Central Hospital Research Fund.
Patents: None declared.

Acknowledgments: We thank Maarit Leinimaa, Marianne Niemelä, Annikki Löf-hjelm, and Helena Taskinen for expert technical assistance.

References

Outi Itkonen1,2*
Leena Kylänpää3
Wan-Ming Zhang4
Ulf-Håkan Stenman1,2

1 Department of Clinical Chemistry
University of Helsinki
Helsinki, Finland
2 Laboratory Division HUSLAB and
Department of Surgery
Helsinki University Central Hospital
Helsinki, Finland
3 Department of Surgery
Helsinki University Central Hospital
Helsinki, Finland
4 Department of Clinical Pathology
Cleveland Clinic
Cleveland, OH

*Address correspondence to this author at:
HUSLAB
P.O. Box 140
FIN-00029 HUS
Helsinki, Finland
Fax: +358-9–471-74806
E-mail: outi.itkonen@hus.fi

Previously published online at DOI: 10.1373/clinchem.2012.188706

Letters to the Editor

Clinical Chemistry 58:10 (2012)