Fluorescence In Situ Hybridization Is the Preferred Approach over Immunohistochemistry for Determining HER2 Status

Jeffrey S. Ross1*

The detection of human growth factor receptor 2 (HER2)2 surface protein expression by immunohistochemistry (IHC) was used as the “clinical trial assay” that led to US Food and Drug Administration clearance of trastuzumab for the treatment of HER2-overexpressing metastatic breast cancer (1). IHC staining remains the most frequent initial test for determining HER2 status and is performed in approximately 80% of the cases of newly diagnosed breast cancers in the US. IHC assessment of HER2 status is semiquantitative rather than qualitative, because HER2 is expressed at low concentrations (e.g., <20,000 receptor molecules per cell) in all breast epithelial cells. Despite the publication of a number of studies that show that the results of a well-performed IHC assay provide a good to excellent correlation between gene copy status and protein expression (2–4), the ability to accurately measure the expression status of the HER2 protein by IHC can be markedly affected by technical issues, such as accentuation by warm and cold tumor ischemia, the duration of tissue fixation in formaldehyde, the tissue-processing technique, and the embedding temperature of the heated paraffin wax (5). Although IHC testing has some advantages, including its wide availability, relatively low cost, easy preservation of stained slides, and the use of a familiar routine microscope, IHC also has substantial drawbacks. These deficiencies include the aforementioned preanalytical issues, as well as the type and intensity of the antigen-retrieval procedure used, the type of antibody (polyclonal vs monoclonal), the lack of a signal from a positive internal control, the variation in system control samples, and, most importantly, the difficulties in applying a semiquantitative and subjective slide-scoring system. The problems with IHC standardization of slide scoring have been emphasized in studies of the patient response to trastuzumab (6). In some cases, but not all, IHC slide scoring can be improved by avoiding overinterpretation of sample edges, retraction artifacts, under- or overfixation artifacts, cases with substantial staining of benign ductal and lobular cells, staining of tumor cell cytoplasm, and membranous tumor cell staining that lacks a complete circumferential staining pattern (2). Therefore, it is not surprising that the results from the United Kingdom National External Quality Assessment Scheme for Immunocytochemistry (UK NEQAS-ICC) found that the lack of reproducibility of HER2 scoring between laboratories was not caused by tumor heterogeneity or differences in fixation or processing but rather by how the scoring system was applied (7). The use of a system for quantitative image analysis can reduce slide-scoring variation among pathologists, especially in 2+ cases (8).

Like IHC, fluorescence in situ hybridization (FISH)-based detection of the ERBB2 [v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived oncogene homolog (avian); also known as HER2] gene copy number is a morphology-driven slide-based assay that features DNA hybridization with fluorescently labeled probes (9). Both the hybridization steps and slide scoring can be automated. Compared with IHC, FISH has major advantages: a more hardy target (DNA) that is more resistant to alterations caused by preanalytical issues (including ischemia, fixation, and tissue processing), a more objective scoring system, and the presence of a built-in internal control consisting of the 2 ERBB2 gene signals that are present both in benign cells and in malignant cells that do not feature ERBB2 gene amplification. In addition, FISH testing has the ability to detect aneuploidy that may reflect both an adverse overall prognosis and the likelihood of downstream HER2 protein overexpression. Although FISH testing is more costly, may require a longer time for slide scoring if not auto-

1 Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, NY.

* Address correspondence to the author at: Albany Medical College, Department of Pathology, Mail Code 81, 47 New Scotland Ave., Albany, NY 12208. Fax 518-262-8092; e-mail rossj@mail.amc.edu.

Received February 16, 2011; accepted April 25, 2011.

Previously published online at DOI: 10.1373/clinchem.2010.160762

2 Nonstandard abbreviations: HER2, human growth factor receptor 2; IHC, immunohistochemistry; UK NEQAS-ICC, United Kingdom National External Quality Assessment Scheme for Immunocytochemistry; FISH, fluorescence in situ hybridization.
mated, uses more-expensive equipment, must be im-
aged for result preservation, and does not provide a
good background morphology, numerous studies have
found it to be more accurate and predictive of trastu-
zumab benefit (2, 10–15). Given the inability to rec-
ognize the detailed background morphology during
signal counting, a potential cause of false-positive
FISH test results is the scoring of ERBB2-amplified
areas of ductal carcinoma in situ in a tumor that has
invasive carcinoma areas that lack ERBB2 amplifica-
tion. Because the technique features a built-in
internal-control system, false-negative FISH results
are rare but may occur when the slide scorer fails to
identify the amplified regions in a tumor with heter-
ogeneity of ERBB2 gene amplification. Considering
that ERBB2 gene amplification can be heterogeneous
in a subset of HER2-positive invasive breast cancers,
diligence and care on the part of the slide scorer are
required when the patient’s sample is scanned at low
magnification (2).

In summary, although the FISH method is more
expensive and time-consuming than IHC, numerous
studies have concluded that this cost is well justified
by the increased accuracy and more precise use of anti-
HER2 targeted therapies (14). A number of systematic
reviews have considered FISH to be more objective and
reproducible (2). In a recent survey, the College of
American Pathologists reported that FISH was more
precise and accurate than IHC. In one study, the con-
cordance rates between IHC and FISH were highest for
tumors scored by IHC as 0 and 1+ and lowest for 2+
and 3+ cases. Despite the fact that the majority of
instances of primary HER2 testing in the US cur-
rently commence with a screen by IHC (with results
of 0 and 1+ considered “negative,” 2+ considered
“equivocal” and referred for FISH testing, and 3+
considered positive), the objectivity and accuracy of
FISH continues to stimulate an increase in primary
FISH testing for HER2 status in clinical breast cancer
samples. Finally, although the FISH-based approach
may be preferable to IHC for evaluating HER2 status
in breast cancer, the advantages of FISH may not be
as great when applied to gastric and gastrointestinal
junction adenocarcinomas, the most recently
approved indication for anti-HER2 targeted therapy
with trastuzumab (15). In the ToGA trial (15)—in
which both IHC and FISH were performed in all
cases and patients were allowed to enter the trial if
the central laboratory scored either test as positive—
was noted that the marked heterogeneity of HER2
amplification/overexpression in upper gastrointestinal
cancers, combined with the minute amounts of tumor
tissue available to assess for cases with endoscopically
obtained biopsies only, might give IHC advantages
over FISH in this setting.

Author Contributions: All authors confirmed they have contributed to the
intellectual content of this paper and have met the following 3 re-
quirements: (a) significant contributions to the conception and design,
acquisition of data, or analysis and interpretation of data; (b) drafting
or revising the article for intellectual content; and (c) final approval of
the published article.

Authors’ Disclosures of Potential Conflicts of Interest: Upon man-
uscript submission, all authors completed the Disclosures of Potential
Conflict of Interest form. Potential conflicts of interest:

Employment or Leadership: None declared.
Consultant or Advisory Role: None declared.
Stock Ownership: None declared.
Honoraria: J.S. Ross, Genentech Speakers Bureau.
Research Funding: None declared.
Expert Testimony: None declared.

References

al. Use of chemotherapy plus a monoclonal antibody against HER2 for
344:783–92.
2. Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi
GN. The HER-2 receptor and breast cancer: ten years of targeted anti-
HER-2 therapy and personalized medicine. Oncologist 2009; 14:
320–88.
3. Hayes DF, Thor AD. c-erbB-2 in breast cancer: development of a clinically
4. Masood S, Bui MM. Prognostic and predictive value of HER2/neu oncogene
5. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et
al. American Society of Clinical Oncology/College of American Patholo-
gists guideline recommendations for human epidermal growth factor
receptor 2 testing in breast cancer. Arch Pathol Lab Med 2007; 131:
18–43.
performance of HER2 testing—National Surgical Adjunct Breast and Bowel
7. Dowsett M, Harby AM, Laing R, Walker R, for the National HER2 Consul-
tation Steering Group. HER2 testing in the UK: consensus from a national
al. Assessment of HER-2/neu status in breast cancer. Automated
Cellular Imaging System (ACIS)-assisted quantitation of immunohisto-
chemical assay achieves high accuracy in comparison with fluorescence
HER-2/neu gene amplification characterized by fluorescence in situ
hybridization: poor prognosis in node-negative breast carcinomas. J Clin
10. Lal P, Salazar PA, Hudis CA, Ladanji M, Chen B. HER-2 testing in breast
cancer using immunohistochemical analysis and fluorescence in situ
hybridization: a single-institution experience of 2,279 cases and compar-
al. Diagnostic evaluation of HER-2 as a molecular target: an assessment
of accuracy and reproducibility of laboratory testing in large, prospective,
Fluorescence in situ hybridization (FISH) as primary methodology for the
assessment of HER2 status in adenocarcinoma of the breast: a single

Clinical Chemistry 57:7 (2011) 981
