itive based on the previously reported criteria of S/LCα-cTnI > 6.7 or S/LCα-cTnT > 5.3 (1, 2). Taken together, 55 (15.9%) of the 345 samples were positive for autoantibodies to cardiac troponin I or T isoforms. In these positive samples, 10.9% (6 of 55) were positive for both autoantibodies. The odds of being positive for both autoantibodies increased in the presence of either species; in samples positive for autoantibodies to cTnI, the coprevalence of α-cTnT was 18.1% (6 of 33), and in α-cTnT-positive samples, the coprevalence of α-cTnI was 21.4% (6 of 28).

The high coprevalence of autoantibodies to cTnT with autoantibodies to cTnI warrants caution in interpreting the significance of a negative or positive cTnT value that contradicts that of cTnI, and vice versa. One should consider that an autoantibody to antigen may have a negative (interference) or positive (stabilizing) effect on the measurement of the antigen, and that multiple autoantibody/antigen pairs may act independently.

Table 1. Coprevalence of human IgG reactive with cTnI and cTnT in serum or plasma from normal blood donors.

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Average age, years (range)</th>
<th>Sex ratio, M:F</th>
<th>Median S/LCα-cTnI (range)</th>
<th>Median S/LCα-cTnT (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>27</td>
<td>44 (20–64)</td>
<td>4.2</td>
<td>10.9 (7.1–95.6)</td>
<td>2.0 (0.5–4.5)</td>
</tr>
<tr>
<td>Group 2</td>
<td>22</td>
<td>37 (19–57)</td>
<td>1.0</td>
<td>1.2 (0.5–6.7)</td>
<td>8.9 (5.4–31.4)</td>
</tr>
<tr>
<td>Group 3</td>
<td>6</td>
<td>36 (20–55)</td>
<td>4.0</td>
<td>15.3 (7.5–41.6)</td>
<td>9.3 (6.8–44.7)</td>
</tr>
<tr>
<td>Group 4</td>
<td>290</td>
<td>38 (18–72)</td>
<td>1.0</td>
<td>1.3 (0.1–6.7)</td>
<td>1.2 (0.1–5.1)</td>
</tr>
</tbody>
</table>

* α-cTnI was defined as S/LC > 6.7; α-cTnT was defined as S/LC > 5.3.

Authors’ Disclosures of Potential Conflicts of Interest: Upon manuscript submission, all authors completed the Disclosures of Potential Conflict of Interest form. Potential conflicts of interest:

- **Employment or Leadership:** None declared.
- **Consultant or Advisory Role:** None declared.
- **Stock Ownership:** M. Adamczyk, Abbott Laboratories; R.J. Brashear, Abbott Laboratories; P.G. Mattingly, Abbott Laboratories.
- **Honoraria:** None declared.
- **Research Funding:** This work was completely funded by Abbott Laboratories.
- **Expert Testimony:** None declared.

Role of Sponsor: The funding organizations played a direct role in the design of study, choice of enrolled patients, review and interpretation of data, or preparation or approval of manuscript.

References

Author Contributions:

All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Maciej Adamczyk
R. Jeffrey Brashear
Phillip G. Mattingly

Abbott Laboratories, Diagnostics Division
Abbott Park, IL.

* Address correspondence to this author at:
Abbott Laboratories, Diagnostics Division, Dept. 09MJ, Bldg. AP20, 100 Abbott Park Road, Abbott Park, IL 60064
Fax 847-938-8927
E-mail maciej.adamczyk@abbott.com

Previously published online at DOI: 10.1373/clinchem.2009.138099

Screening Panels for Detection of Monoclonal Gammopathies: Confidence Intervals

To the Editor:

The recent article in Clinical Chemistry by Katzmann et al. (1) on screening panels to detect monoclonal gammopathies provided important information on the use of the free light chain (FLC)1 assay, and we commend the authors for this report. Apart from the selection bias inherent in the exclusion of 90% of cases of monoclonal gammopathy of uncertain significance (MGUS), we would like to address some aspects that, in our opinion, may enhance understanding of the role of various diagnostic strategies to detect mono-

1 Nonstandard abbreviations: FLC, free light chains; MGUS, monoclonal gammopathy of uncertain significance; IFE, immunofixation electrophoresis; PEL, protein electrophoresis.
Katzmann and coworkers did not make any statement regarding the statistical significance of their findings, nor did they provide CIs of the percentages in their Table 2. In deciding whether a particular diagnostic strategy is worthwhile to implement, it is useful to know whether any observed differences can be explained by chance; to do this, we calculated the 95% CIs of the 2 approaches compared with limited space and/or serum FLC. Katzmann et al. reported that “serum PEL and/or IFE should be used in combination with either urine IFE and serum IFE as components of an alternative testing strategy. Without these results the information provided by Katzmann et al. does not make possible the accurate estimation of the yield of serum PEL and serum IFE as a stand-alone strategy. Therefore it is not possible to verify the statement by Katzmann et al. that “serum PEL and/or IFE should be used in combination with either urine IFE and/or serum FLC.” Presenting the findings of complex comparisons with limited space can be challenging, but the use of appropriate statistical analysis and relevant CIs aids in the interpretation of data and allows readers to judge the validity of conclusions reached (4, 5). In our opinion, the usefulness of the data in the report by Katzmann and coworkers will be enhanced by the addition of the information discussed above.

Table 1. Sensitivity of monoclonal gammopathy screening panels.*

<table>
<thead>
<tr>
<th>Condition</th>
<th>All 5 tests</th>
<th>Serum PEL, IFE, and uIFE</th>
<th>Serum PEL, IFE, and FLC</th>
<th>Serum PEL and FLC</th>
<th>Serum IFE</th>
<th>Serum PEL</th>
<th>Serum FLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>98.6 (97.1–99.2)</td>
<td>97.0 (96.2–97.8)</td>
<td>97.4 (96.7–98.1)</td>
<td>94.3 (93.2–95.4)</td>
<td>87.0 (85.5–88.5)</td>
<td>79.0 (77.2–80.8)</td>
<td>74.3 (72.3–76.3)</td>
</tr>
<tr>
<td>MM</td>
<td>100.0 (99.4–100.0)</td>
<td>98.7 (97.5–99.9)</td>
<td>100.0 (99.4–100.0)</td>
<td>94.4 (92.3–96.5)</td>
<td>87.6 (84.6–90.6)</td>
<td>96.8 (95.1–98.5)</td>
<td></td>
</tr>
<tr>
<td>Macroglobulinemia</td>
<td>100.0 (91.1–100.0)</td>
<td>100.0 (91.1–100.0)</td>
<td>100.0 (91.1–100.0)</td>
<td>100.0 (91.1–100.0)</td>
<td>73.1 (56.7–89.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMM</td>
<td>100.0 (98.6–100.0)</td>
<td>100.0 (98.6–100.0)</td>
<td>99.5 (97.8–100.0)</td>
<td>98.4 (96.2–100.0)</td>
<td>94.2 (90.7–97.7)</td>
<td>81.2 (75.6–86.8)</td>
<td></td>
</tr>
<tr>
<td>MGUS</td>
<td>100.0 (99.5–100.0)</td>
<td>100.0 (99.5–100.0)</td>
<td>97.1 (95.8–98.6)</td>
<td>88.7 (86.0–91.4)</td>
<td>92.8 (90.5–95.1)</td>
<td>81.9 (78.6–85.2)</td>
<td>42.2 (38.0–46.4)</td>
</tr>
<tr>
<td>Plasmacytoma</td>
<td>89.7 (77.5–100.0)</td>
<td>89.7 (77.5–100.0)</td>
<td>86.2 (73.0–99.4)</td>
<td>72.4 (56.7–88.1)</td>
<td>72.4 (56.7–88.1)</td>
<td>55.2 (38.2–72.2)</td>
<td></td>
</tr>
<tr>
<td>POEMS</td>
<td>96.8 (87.5–100)</td>
<td>96.8 (87.5–100)</td>
<td>74.2 (57.4–89.2)</td>
<td>96.8 (87.5–100)</td>
<td>74.2 (57.4–89.2)</td>
<td>9.7 (0.0–21.3)</td>
<td></td>
</tr>
<tr>
<td>Extramedullary</td>
<td>20.0 (0.0–43.7)</td>
<td>20.0 (0.0–43.7)</td>
<td>10.0 (0.0–31.5)</td>
<td>10.0 (0.0–31.5)</td>
<td>10.0 (0.0–31.5)</td>
<td>10.0 (0.0–31.5)</td>
<td></td>
</tr>
<tr>
<td>LCDD</td>
<td>83.3 (65.8–100.0)</td>
<td>77.8 (59.2–96.4)</td>
<td>77.8 (59.2–96.4)</td>
<td>77.8 (59.2–96.4)</td>
<td>55.6 (34.8–76.4)</td>
<td>55.6 (34.8–76.4)</td>
<td>77.8 (59.2–96.4)</td>
</tr>
</tbody>
</table>

* Adapted, with permission, from Katzmann et al. (1). Results are presented as % (95% CI), calculated with the modified Wald method [Motulsky (2)].

Author Contributions: Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

References
Letters to the Editor

In Reply

We agree with Pretorius and colleagues that CIs for screening panels for the detection of the various plasma cell proliferative disorders are a useful addition. Our decision to present the number and percentage of cases detected with various screening panels allows the reader to make these computations (1). There are many points raised by Pretorius and colleagues that need clarification. First, the serum free light chain (FLC) assay is a simple serum test that can be readily performed even on serum samples obtained for other purposes. On the other hand, urine electrophoresis and urine immunofixation studies require urine collection, making these tests more inconvenient and reducing physician ordering and patient compliance. When we evaluate the various strategies for diagnosing monoclonal gammopathies, although sensitivity is a major consideration, it is not the only consideration. In diagnostic categories in which urine immunofixation electrophoresis (IFE) and serum FLC contribute equally to diagnostic sensitivity (e.g., plasmacytoma), patient compliance needs to be considered. The submission of a urine sample for a screening test varies by the patient population studied, and inconvenience and low compliance are major problems. In hospitalized patients, the need for the urine sample may extend the hospital stay by an extra day. Therefore, even if urine IFE and serum FLC perform comparably in terms of sensitivity, the outcomes will be better for panels containing serum FLC if compliance is superior. Finances must also be considered. The costs of testing as well as reimbursement policies vary between laboratories. Thus, the serum FLC assay need not be superior to urine studies in terms of sensitivity, just not significantly inferior, to make it a useful and in most cases the preferred alternative.

Second, our goal in screening for possible plasma cell disorders is in most cases directed at ruling out malignancy (myeloma, macroglobulinemia, plasmacytoma) or light-chain amyloidosis. Except in certain specific instances (e.g., evaluation of a patient with unexplained neuropathy) we are not clinically interested in detecting asymptomatic monoclonal gammopathy of uncertain significance (MGUS). In fact, screening for MGUS is not proven to be effective and is not recommended. Thus if the proposed screening panel with serum FLC has lower sensitivity and "misses" some patients with MGUS, it is not of clinical consequence, and may even be desirable. In contrast, what we are keen on is to maintain a high sensitivity for detecting malignancy or light-chain amyloidosis.

Accordingly, it is true that only 10% of 5168 MGUS patients had all the assays performed, and only these 524 MGUS patients were included in the study. We recognize that selection bias is always a potential confounder of retrospective studies. However, as discussed earlier, we do not consider it a disadvantage that the combination of serum FLC plus electrophoresis is less sensitive for the diagnosis of MGUS, because that is not the diagnostic outcome of interest in most clinical situations.

Finally, the implied assertion that if the CIs overlap then the test panels are not different is not correct. Because multiple tests are performed on the same patients, any P value computation must take into account the pairing. When we use McNemar’s test to compute P values for diagnostic sensitivity for panels containing serum protein electrophoresis, IFE, and FLC compared to serum protein electrophoresis and FLC there is a statistically significant decrease in sensitivity when screening for amyloidosis (P = 0.03), POEMS (polyneuropathy organomegaly endocrinopathy monoclonal gammopathy and skin changes syndrome) (P = 0.008), and MGUS (P < 0.001). The same analyses for panels with and without urine IFE show a statistically significant decrease in sensitivity for amyloidosis (P = 0.01). As suggested by Pretorius et al., plasmacytoma detection has no significant decrement in sensitivity when serum and urine IFE are omitted. We believe, however, that focusing on P values rather than the raw data is not the best approach. The use of serum FLC instead of urine IFE allowed

Carel J. Pretorius* Jacobus P. J. Ungerer Urs Wilgen Sandra Klingberg Department of Chemical Pathology, Pathology Queensland Royal Brisbane and Women’s Hospital Herston, Brisbane, Queensland, Australia

*Address correspondence to this author at: Department of Chemical Pathology, Royal Brisbane and Womens Hospital Level 3, Block 7, Herston Road Herston, QL, Australia 4029 Fax +617-36363417 E-mail carel_pretorius@health.qld.gov.au

Previously published online at DOI: 10.1373/clinchem.2009.139097

1 Nonstandard abbreviations: FLC, free light chains; IFE, immunofixation electrophoresis; MGUS, monoclonal gammopathy of uncertain significance.