pain who are undergoing evaluation for MI.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures of Potential Conflicts of Interest: Upon manuscript submission, all authors completed the Disclosures of Potential Conflict of Interest form. Potential conflicts of interest:

Employment or Leadership: N.G. Morgenthaler, BRAHMS; A. Bergmann, BRAHMS.

Consultant or Advisory Role: M.H. Brutsche, advisory boards for Pfizer (Champix, Spiriva), GlaxoSmithKline, and Novartis; C. Mueller, BRAHMS and Abbott Laboratories.

Stock Ownership: A. Bergmann, BRAHMS.

Honoraria: C. Mueller, Biosite, Abbott Laboratories, Roche, BRAHMS, and Siemens.

Research Funding: M.T. Maeder, Swiss Science National Foundation (grant PBZHB-121007); M.H. Brutsche, AstraZeneca and Pfizer; C. Mueller, Biosite, Abbott Laboratories, Roche, BRAHMS, and Siemens.

Expert Testimony: None declared.

Role of Sponsor: The funding organizations played no role in the design of study, choice of enrolled patients, review and interpretation of data, or preparation or approval of manuscript.

References

Micha T. Maeder*†, Daniel Staub, Martin H. Brutsche, Nisha Arenja, Thenral Socrates, Miriam Reiter, Julia Meissner, Nils G. Morgenthaler, Andreas Bergmann, Joachim Mueller

* Address correspondence to this author at: Cardiology Division Kantonsspital St. Gallen Rorschacherstrasse 95 CH-9007 St. Gallen Switzerland Fax +41-71-494-6142

E-mail micha.maeder@bluewin.ch

Previously published online at DOI: 10.1373/dinchem.2009.136309

Coprevalence of Autoantibodies to Cardiac Troponin I and T in Normal Blood Donors

To the Editor:

We recently reported the high frequency of plasma and serum samples with increased concentrations of IgG reactive to cardiac troponin I (cTnI; 12.7%) and T (9.9%) in normal blood donor cohorts. Whereas the presence of autoantibodies to cardiac troponin I (α-cTnI) has been highlighted as a potential source of false-negative cTnI immunoassay results (3), the stabilizing effect of α-cTnI on the circulating half-life of cTnI has been much less explored (4). The former may result in delayed diagnosis of acute myocardial infarction (AMI) on presentation, while the latter may require additional diagnostic testing to reconcile the cTnI measurement with clinical observations, thus prolonging the duration of care, with its attendant cost. When such discordant results are noted, additional information from related biomarkers, particularly cTnT, is often used to clarify the findings. With the high prevalence of α-cTnT (2), however, one must question the significance of a negative or positive cTnT value that contradicts that of cTnI. With that in mind, we report here the coprevalence of autoantibodies to both cardiac troponin I and T in plasma and serum samples in a normal donor cohort.

We obtained frozen plasma or serum samples from normal blood donors (n = 345), all of which had been approved by an institutional review board for research use, from the Abbott Laboratories specimen bank and thawed them at 2–8 °C before use. We analyzed the samples using direct chemiluminescent microplate assays for α-cTnI (1) and α-cTnT (2).

The normal donor population could be categorized into 4 groups based on the signal-to-low control (S/LC) response of the α-cTnI and α-cTnT (Table 1). Samples were considered pos-

1 Nonstandard abbreviations: cTn, cardiac troponin; α-cTnI, autoantibody to cTnI; AMI, acute myocardial infarction; S/LC, signal to low control.
The high coprevalence of autoantibodies to cTnT warrants caution in interpreting the significance of a negative or positive cTnT value that contradicts that of cTnl, and vice versa. One should consider that an autoantibody to antigen may have a negative (interference) or positive (stabilizing) effect on the measurement of the antigen, and that multiple autoantibody/antigen pairs may act independently.

Table 1. Coprevalence of human IgG reactive with cTnI and cTnT in serum or plasma from normal blood donors.

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (α-cTnI+/α-cTnT−)</th>
<th>Group 2 (α-cTnI+/α-cTnT−)</th>
<th>Group 3 (α-cTnI−/α-cTnT+)</th>
<th>Group 4 (α-cTnI−/α-cTnT+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>27</td>
<td>22</td>
<td>6</td>
<td>290</td>
</tr>
<tr>
<td>Average age, years (range)</td>
<td>44 (20–64)</td>
<td>37 (19–57)</td>
<td>36 (20–55)</td>
<td>38 (18–72)</td>
</tr>
<tr>
<td>Sex ratio, M:F</td>
<td>4.2</td>
<td>1.0</td>
<td>4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Median S/LC(_{α-cTnI}) (range)</td>
<td>10.9 (7.1–95.6)</td>
<td>1.2 (0.5–6.7)</td>
<td>15.3 (7.5–41.6)</td>
<td>1.3 (0.1–6.7)</td>
</tr>
<tr>
<td>Median S/LC(_{α-cTnT}) (range)</td>
<td>2.0 (0.5–4.5)</td>
<td>8.9 (5.4–31.4)</td>
<td>9.3 (6.8–44.7)</td>
<td>1.2 (0.1–5.1)</td>
</tr>
</tbody>
</table>

* α-cTnI− was defined as S/LC > 6.7; α-cTnT+ was defined as S/LC > 5.3.

References

Letters to the Editor

The recent article in *Clinical Chemistry* by Katzmann et al. (1) on screening panels to detect monoclonal gammopathies provided important information on the use of the free light chain (FLC)\(^1\) assay, and we commend the authors for this report. Apart from the selection bias inherent in the exclusion of 90% of cases of monoclonal gammopathy of uncertain significance (MGUS), we would like to address some aspects that, in our opinion, may enhance understanding of the role of various diagnostic strategies to detect mono-

\(^1\) Nonstandard abbreviations: FLC, free light chains; MGUS, monoclonal gammopathy of uncertain significance; IFE, immunofixation electrophoresis; PEL, protein electrophoresis.

Screening Panels for Detection of Monoclonal Gammopathies: Confidence Intervals

To the Editor: