A Commutable Cytomegalovirus Calibrator Is Required to Improve the Agreement of Viral Load Values between Laboratories

Angela M. Caliendo,1,2* Mona D. Shahbazian,3 Carl Schaper,4 Jessica Ingersoll,1,2 Deborah Abdul-Ali,1,2 Jerry Boonyaratanakornkit,3 Xiao-Li Pang,5 Julie Fox,5 Jutta Preiksaitis,5 and E. Ralf Schönbrunner3

BACKGROUND: Viral load testing for cytomegalovirus (CMV) is an important diagnostic tool for the management of transplant recipients and immunocompromised individuals; however, inconsistency among laboratories in quantitative measurements of viral load limits interinstitutional comparisons. These inconsistencies stem from the lack of assays cleared by the US Food and Drug Administration, the absence of international standards, the wide variety of CMV-extraction and detection methods, and differences in materials used for calibration. A critical component of standardization is the use of calibrators that are traceable and commutable.

METHODS: Bland–Altman plots and prediction ellipses were used to test the commutability of 2 CMV calibrators for 2 different quantification methods.

RESULTS: Tests with 2 methods showed 1 calibrator to be commutable and the other to be noncommutable. The results for the commutable calibrator were within the 95% prediction interval of the clinical samples in the Bland–Altman plot and within the 95% prediction ellipse for a simulated commutable calibrator, whereas the results for the noncommutable calibrator were not within these prediction intervals. When used to calibrate patient results, only the commutable calibrator, the OptiQuant® CMVtc Calibration Panel, significantly improved the comparability of viral loads for the 2 different measurement methods.

CONCLUSIONS: This study demonstrates that an important goal in the effort to improve healthcare for patients with CMV-related disease is the establishment of traceable and commutable reference materials, including both calibrators and controls.

© 2009 American Association for Clinical Chemistry

1 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA; 2 Emory Center for AIDS Research, Emory University, Atlanta, GA; 3 AcroMetrix Corporation, Benicia, CA; 4 independent statistical consultant, Philadelphia, PA; 5 Provincial Laboratory for Public Health, Edmonton, Alberta, Canada.

* Address correspondence to this author at: Emory University Hospital, H180, 1364 Clifton Rd., Atlanta, GA 30322. Fax +404-727-3133; e-mail acalien@emory.edu.

Received February 6, 2009; accepted June 12, 2009.

Previously published online at DOI: 10.1373/clinchem.2009.124743

roducing their own calibrators, but these materials can differ with respect to analyte, matrix, value-assignment method, and units of measurement. Considering all of these factors, it is not surprising that measurements of CMV viral load vary with the laboratory that produced the result (8).

Use of a common calibrator with 2 different methods of viral load quantification can help standardize results, because mathematical relationships can be established between the nominal virus concentration of the calibrator and the result produced by each method; however, because no single calibrator is available in unlimited quantities worldwide, an important aspect of calibrators is that their values be traceable to an independent standard (9). Traceability ensures that the values and uncertainty assigned to a reference material (control or calibrator) are linked by an unbroken chain to a calibrator of a higher metrologic order. According to International Organization for Standardization (ISO) 17511:2003 (10), the highest level of calibrator is a primary calibrator that has values in International System of Units (SI), but in the absence of such a calibrator, an international conventional calibrator such as a WHO standard can be used. For analytes for which no international conventional calibrator is available, such as CMV, manufacturers of reference materials should use a working calibrator for establishing traceability (10). In this scheme, once international conventional calibrators become available, the traceability chain of the manufacturer’s working calibrator can be extended to incorporate higher-order calibrators.

Another important aspect of reference materials is that they are commutable (11). The property of commutability ensures that the reference material produces results that are consistent with authentic clinical samples when tested with the intended measurement methods. Traceability alone does little to establish standardization across measurement methods because clinical samples can have a much more complex composition than reference materials. Because quantification methods differ in their ability to remove inhibitors, extract nucleic acids, and amplify the appropriate target from clinical samples, the relationship between nominal and observed virus concentrations for the calibrator may not represent that of patient samples. It is well established in clinical chemistry that a commutable calibrator is required to achieve accurate clinical results. For example, calibration of assays with non-commutable reference materials has been shown to change patient results from nonpathologic to pathologic and vice versa (12).

The importance of commutability first became apparent through national efforts in the 1960s to standardize cholesterol measurements (13). Since then, commutable reference materials have been established for several analytes, including glucose, triglycerides, and others (14, 15). Although the commutability concept has been emphasized in the area of clinical chemistry, it has not yet been applied in the area of nucleic acid testing. In this report, the commutability of 2 calibrators for CMV nucleic acid was assessed with 2 different methods for measuring CMV viral load. This report represents the first commutability study performed on reference materials for nucleic acid testing.

Materials and Methods

CMV CALIBRATORS AND CLINICAL SAMPLES
Both CMV calibrators were derived from CMV strain AD169, which was cultured with human foreskin fibroblasts, purified by sucrose density gradient centrifugation, and resuspended in 10 mmol/L Tris, 150 mmol/L NaCl, 1 mmol/L EDTA, pH 7.5. For the OptiQuant® CMV DNA Quantification Panel (AcroMetrix), virus was serially diluted to 5×10^{5}, 5×10^{4}, 5×10^{3}, and 5×10^2 copies/mL in normal EDTA-anticoagulated human plasma, which was derived from blood collected in bags coated with sodium citrate (pooled from >50 units of blood). For the OptiQuant CMVtc Calibration Panel, virus was serially diluted to 5×10^5, 5×10^4, 5×10^3, and 5×10^2 copies/mL in nonpathologic EDTA-anticoagulated human plasma pooled from 4 units. Both matrices were tested and found to be negative for CMV DNA, hepatitis B virus DNA, hepatitis C virus RNA, HIV-1 RNA, antibodies to HIV-1 and HIV-2, hepatitis B surface antigen, antibodies to hepatitis C virus, and antibodies to HTLV I and II.

The 40 patient samples used in the study (whole blood anticoagulated with EDTA) were sent to the Emory University Hospital Molecular Diagnostics Laboratory for routine testing of CMV viral load. Residual plasma was stored at $-20 \, ^\circ \text{C}$ before testing in this study. Samples were thawed, and 250-μL aliquots were stored at $-70 \, ^\circ \text{C}$ before distribution to both laboratories. This protocol was approved by the Emory University Institutional Review Board (Protocol No. 247-2001).

EXTRACTION AND AMPLIFICATION SYSTEMS
Different extraction and amplification systems (referred to here as method 1 and method 2) were used in 2 independent laboratories (Table 1). For method 1, the extraction method used was the automated Roche MagNA Pure method with the LC Total Nucleic Acid Isolation Kit, which uses magnetic glass particles to isolate DNA. This procedure was used in combination with the Qiagen/artus™ CMV TM ASR, which amplifies
and detects the UL122\(^7\) (immediate-early 2 transcriptional activating protein) gene. Thermal cycling and real-time detection were performed with the ABI Prism 7500 (Applied Biosystems). The quantification calibrators provided by the manufacturer were used for calibration. This method was linear from 2.5–7.0 log\(_{10}\) copies/mL. For method 2, the Qiagen QIAamp DNA Mini Kit, which uses columns with silica gel membranes to isolate DNA, was used for manual extraction. Real-time PCR was performed with a laboratory-developed real-time PCR test that amplifies and detects the UL55 (glycoprotein B) gene of CMV. Thermal cycling and real-time detection were carried out with the Roche LightCycler instrument \((16, 17)\). The assay was calibrated with DNA from CMV strain AD169 spiked into plasma. This method has a linear range of 2.0–7.0 log\(_{10}\) copies/mL.

STUDY METHODS

The commutability study was designed according to CLSI guideline EP14-A2 \((18)\). Forty clinical samples were tested in duplicate, and the 2 AcroMetrix CMV calibrators were tested in triplicate in both laboratories. Four of the 40 clinical samples tested were below the limit of quantification for method 2 and were removed from further analysis.

<table>
<thead>
<tr>
<th>Method 1</th>
<th>Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction method</td>
<td>MagNA Pure Total Nucleic Acid Kit</td>
</tr>
<tr>
<td></td>
<td>Magnetic silica particles</td>
</tr>
<tr>
<td></td>
<td>Automated sample extraction</td>
</tr>
<tr>
<td>Gene target</td>
<td>UL122</td>
</tr>
<tr>
<td></td>
<td>Immediate-early 2 transcriptional activating protein</td>
</tr>
<tr>
<td></td>
<td>105-bp amplicon</td>
</tr>
<tr>
<td></td>
<td>Internal control</td>
</tr>
<tr>
<td>Probe chemistry</td>
<td>TaqMan</td>
</tr>
<tr>
<td></td>
<td>Cleaved probes</td>
</tr>
<tr>
<td></td>
<td>Detection during elongation phase</td>
</tr>
<tr>
<td></td>
<td>No melting curve analysis</td>
</tr>
<tr>
<td>Detection system</td>
<td>ABI Prism 7500</td>
</tr>
<tr>
<td></td>
<td>Plate based</td>
</tr>
<tr>
<td></td>
<td>Heat block</td>
</tr>
<tr>
<td></td>
<td>Halogen lamp excitation unit</td>
</tr>
</tbody>
</table>

\(^*\) FRET, fluorescence resonance energy transfer; LED, light-emitting diode.

STATISTICAL ANALYSIS

Evaluation of commutability. Examination of commutability and the matrix effect involves establishing a mathematical relationship via regression analysis between 2 sets of assay values for a group of clinical samples and then evaluating whether the reference material falls within the prediction interval of the clinical regression line \((18, 19)\). Linear regression analysis was based on a Bland–Altman bias plot of the clinical sample results for the 2 methods. For further details, see the Supplemental Materials and Methods in the Data Supplement that accompanies the online version of this article at http://www.clinchem.org/content/vol55/issue9.

Bland–Altman plot and prediction intervals. Viral load values were log\(_{10}\)-transformed before analysis so that variation would be stabilized across the range of observed values to satisfy the constant variance requirement of ordinary least squares. The mean observed value for each clinical sample and each concentration of the 2 CMV calibrators was calculated for both laboratories. For each sample, the difference in mean values between the 2 methods was plotted against the mean of the values obtained with the 2 methods \((20)\). We calculated 95% prediction intervals with the formula in the Supplemental Materials and Methods in the online Data Supplement.

Simulated regression lines and prediction ellipses. The previous analysis evaluates each virus concentration of

\(^7\) Genes: UL122, CMV immediate-early 2 transcriptional activating protein; UL55, CMV glycoprotein B.
the calibrator sets individually. Calibrators are often used at >1 concentration, so we investigated whether the 4 concentrations constituting a set of calibrators were commutable as a group. Simulations were carried out to understand the distribution of regression lines that could have resulted from testing the 2 sets of calibrators if they behaved like clinical samples. For details, see the Supplemental Materials and Methods in the online Data Supplement.

Recalibration analysis. With the data obtained from the 2 CMV calibrators with each method, we generated a regression line that compared the nominal virus concentrations to the observed concentrations. The equation for this regression line was then used to adjust the observed results from the clinical samples tested with the same method. The difference between the 2 methods in the adjusted log_{10} virus concentration was calculated for each clinical sample, and the numbers of samples within various ranges were counted and plotted as a percentage of the total number of samples. To determine the results for a perfectly commutable calibrator, we used the regression line for the clinical samples on the Bland–Altman plot to recalibrate each observed difference:

Adjusted difference = Observed difference − [aBA + bBA × (Observed mean)],

where aBA and bBA are the slope and intercept, respectively, of the regression line for the clinical samples in the Bland–Altman plot.

Results

To assess the commutability of the 2 CMV calibrators, we carried out testing in 2 independent laboratories with different methods for measuring CMV viral load that vary with respect to the extraction, amplification, and detection methods (Table 1). Testing of the 36 clinical samples revealed virus concentrations in the range of approximately 2–6 log_{10} copies/mL with method 1 and 3–7 log_{10} copies/mL with method 2 (Fig. 1). The variation observed was generally characterized by a CV of 40% or less, but the CV exceeded 40% with both methods at virus concentrations <3.5 log_{10} copies/mL (Fig. 1). With method 1, the OptiQuant CMV DNA Quantification Panel generally showed greater variation than the OptiQuant CMV_{tc} Calibration Panel, but method 2 showed no consistent difference between the 2 panels in variation.

To further compare the results of the 2 laboratories, we analyzed the OptiQuant CMV DNA Quantification Panel and OptiQuant CMV_{tc} Calibration Panel according to the independent calibration methods of each laboratory. With the OptiQuant CMV DNA Quantification Panel, a difference between the 2 methods of approximately 1 log_{10} was observed (Fig. 2A). The slope of the regression lines was close to 1 in both laboratories. With the OptiQuant CMV_{tc} Calibration Panel, the slope of the regression line for method 2 was steeper than for method 1 (Fig. 2B). For method 1, the regression lines for OptiQuant CMV DNA Quantification and the OptiQuant CMV_{tc} Calibration panels were very similar (Fig. 2C). In contrast, the regression lines for the 2 different calibrators were noticeably different for method 2 (Fig. 2D).

To analyze commutability, we plotted the mean value of each clinical sample obtained with the 2 methods against the difference in the values between methods 1 and 2 in a Bland–Altman plot (Fig. 3). The viral load values obtained with method 1 were consistently lower than those obtained with method 2 (mean difference, 0.66 log_{10} copies/mL). A linear regression based on ordinary least squares was then performed for the clinical data plotted in this manner. The regression line is not parallel to the x axis because the bias between the 2 tests is not consistent across the linear range. The scatter in the data around the regression line confirmed that weighted regression analysis was not necessary. The 95% prediction interval for the regression line was calculated and plotted. Adding the results for the OptiQuant CMV DNA Quantification Panel and the OptiQuant CMV_{tc} Calibration Panel to the Bland–Altman plot revealed that the OptiQuant CMV DNA Quantification Panel result for the 2.0 log_{10} copies/mL panel member was below the 95% prediction interval, and the panel as a whole showed a trend of being below the clinical regression line. For the OptiQuant CMV_{tc} Calibration Panel, all of the results were within the prediction interval, and the panel as a whole was more centered around the clinical regression line. These results suggest that the OptiQuant CMV_{tc} Calibration Panel is commutable and indicate that the OptiQuant CMV DNA Quantification Panel, when considered as a whole, is not.

Bootstrapping methods were used to further understand whether the results observed for the 2 CMV calibrators were due to chance, in particular whether the observation that the result for the 2.0 log_{10} copies/mL panel member of the OptiQuant CMV DNA Quantification Panel was outside of the 95% prediction interval was sufficient to conclude that this calibrator was not commutable. Simulations were carried out to obtain the range of slope and intercept values for the regression line of the 2 CMV calibrators, assuming they were performing similarly to clinical samples. The distribution of regression parameters indicated that the observed regression line for the OptiQuant CMV DNA Quantification Panel was near the ellipse representing
the 99% prediction interval, suggesting that the observed results would have been expected for a commutable calibrator only 1% of the time (Fig. 4). In contrast, the observed regression line for the OptiQuant CMVtc Calibration Panel could be expected approximately 50% of the time with a commutable calibrator. These results further support the conclusion that the OptiQuant CMVtc Calibration Panel is commutable and the OptiQuant CMV DNA Quantification Panel is not.

To further analyze the 2 CMV calibrators, we used each panel as a calibrator to adjust the observed values of the clinical samples in both laboratories. The effect of the calibrators was measured as the percentage of clinical samples for which the absolute log\(_{10}\) difference between the 2 laboratories was within a certain range (e.g., 0.5 log\(_{10}\) copies/mL). With the actual results from the 2 laboratories (i.e., with each method using an independent calibrator), the observed values of all 36 samples were within 1.4 log\(_{10}\) copies/mL (Fig. 5). Approximately 75% of the values were within 1 log\(_{10}\) copy/mL and 45% were within 0.5 log\(_{10}\) copies/mL. When the OptiQuant CMV DNA Quantification Panel was used to recalibrate the clinical results, the only notable difference was that a higher percentage of the re-

Fig. 1. Distribution and variability of clinical results.
Thirty-six clinical samples (white triangles) were tested in duplicate in each laboratory. The OptiQuant CMV Quantification Panel (black circles) and the OptiQuant CMVtc Calibration Panel (gray squares) were tested in triplicate. The mean log value observed for each sample is plotted against the CV for method 1 (A) and method 2 (B).
Results were within 0.8–1.1 log_{10} copies/mL such that all of the clinical results were within approximately 1.1 log_{10} copies/mL. With the OptiQuant CMV tc Calibration Panel, recalibration increased the comparability of the clinical results overall. The percentage of results within 0.5 log_{10} copies/mL increased from 45% to 70%, and the percentage within 0.75 log_{10} copies/mL increased from 60% to almost 100%. Finally, results were calculated on the basis of a perfectly commutable calibrator; this theoretical calibrator performed similarly to the OptiQuant CMV tc Calibration Panel, suggesting that the reason for the differences in clinical results between laboratories was due to the inherent imprecision of PCR-based tests rather than to the calibration. Therefore, the OptiQuant CMV tc Calibration Panel improved the results to the theoretical limit possible with the assays used.

Discussion

Because of the absence of international standards, the lack of FDA-cleared assays, the wide variety of extraction and detection methods used, and differences in reference materials for value assignment and calibration, measurements of CMV viral load in different laboratories are inconsistent. This lack of standardization prevents the establishment of broadly applicable viral load cutoffs for clinical decision-making and compromises the ability to compare results from different studies. An important step toward standardizing CMV testing is the development of traceable and commutable calibrators.

In this study, the commutability of 2 different calibrators for CMV nucleic acid testing (the OptiQuant CMV DNA Quantification Panel and the OptiQuant CMV tc Calibration Panel) was studied. The
OptiQuant CMVtc Calibration Panel gave results that more closely mirrored the clinical samples than the OptiQuant CMV DNA Quantification Panel. Three of the 4 panel members of the OptiQuant CMV DNA Quantification Panel were within the 95% prediction interval for the clinical samples in the Bland–Altman plot, suggesting that at least 3 of the 4 panel members were commutable; however, further analyses simulating the results of a perfectly commutable calibrator indicated that the results obtained for the OptiQuant CMV DNA Quantification Panel would be expected only 1% of the time if the panel was commutable, whereas the results of the OptiQuant CMVtc Calibration Panel would be expected 50% of the time. Therefore, the OptiQuant CMVtc Calibration Panel was deemed commutable, and the OptiQuant CMV DNA Quantification Panel was not. The difference in performance between the OptiQuant CMV DNA Quantification Panel and the OptiQuant CMVtc Calibration Panel with respect to the clinical samples could be explained by either the analyte or the matrix. Because both CMV calibrators were derived from the same standardized stock of cultured CMV, the difference cannot be attributed to the analyte but is more likely due to differences in the matrix. Because a substantial proportion of the human population carries antibodies to CMV and because antibodies have the potential to react with the viral particles that were spiked into each matrix, we tested the hypothesis that the difference in commutability was due to differences in the presence of CMV antibodies. As expected for pooled plasmas, both matrices were similarly positive for anti-CMV antibodies, suggesting that such a difference was not the root cause of the observed differences (data not shown). Both of the matrices used for the 2 panels are composed of normal human plasma pooled from multiple donors. The matrix of the OptiQuant CMV DNA Quantification Panel consists of an EDTA-based plasma derived from blood collected in bags coated with sodium citrate. In contrast, the matrix used in the OptiQuant CMVtc Calibration Panel is a purely EDTA-based plasma. It is possible that this difference in anticoagulants is the cause of the commutability differences. It is also possible that undefined component(s) of the plasmas from the 2 donor pools are sufficiently different in composition to cause the differences in performance compared with the clinical samples; however, considering the diversity of the 36 clinical samples, this possibility seems unlikely.

The assigned values for virus concentration for both the OptiQuant CMV DNA Quantification Panel and OptiQuant CMVtc Calibration Panel are traceable to the same manufacturer’s working calibrator, but the impact of commutability, or the lack thereof, on standardization is profound. When the 2 panels were used to recalibrate the results observed for each method, the OptiQuant CMV DNA Quantification Panel had a very limited effect on improving the comparability of clinical results, because only the samples with the greatest differences showed improvement. The OptiQuant
CMVtc Calibration Panel, in contrast, increased the similarity of the results for the 2 laboratories regardless of the initial difference. In fact, a statistically derived commutable calibrator indicated that the OptiQuant CMVtc Calibration Panel improved the comparability of results to the greatest extent possible for any calibrator. The remaining difference in values between the laboratories is likely due to assay imprecision and the fact that the clinical samples were tested only in duplicate. These results confirm the universality of the finding in clinical chemistry that calibrators must be commutable to be capable of standardizing testing between laboratories (11).

The fact that the use of the same calibrator in 2 different laboratories does not necessarily improve the comparability of clinical results has wide-ranging im-
lications for nucleic acid testing. Ideally, WHO and NIST standards for nucleic acid testing should have values that are consistent between lots and should be commutable between all assay systems. Because the achievement of such consistent and commutable standards is difficult to accomplish, the second-best approach would be to minimize lot-to-lot shifts in values of the WHO and NIST standards and to ensure that secondary reference materials are both traceable to these higher metrologic standards and commutable between representative assay systems. For analytes that currently lack WHO and NIST standards, such as CMV, we recommend that manufacturers of reference materials ensure traceability to an internal calibrator according to ISO 17511 and establish commutability between as many assay systems as practicable. Given the urgent need for standardization in the molecular diagnostics field, we recommend that this goal be a high priority for providers of reference materials as well as for the diagnostics laboratories that provide support for these studies.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures of Potential Conflicts of Interest: Upon manuscript submission, all authors completed the Disclosures of Potential Conflict of Interest form. Potential conflicts of interest:

Employment or Leadership: M.D. Shahbazian, AcroMetrix; J. Boon-yanratanakornkit, AcroMetrix; E.R. Schönbrunner, AcroMetrix.

Consultant or Advisory Role: C. Schaper, AcroMetrix.

Honoraria: None declared.

Research Funding: Emory Center for AIDS Research (P30 AI050409).

Expert Testimony: None declared.

Role of Sponsor: The funding organizations played a direct role in the design of the study, the review and interpretation of data, and the preparation and final approval of the manuscript.

References

5. Pang XL, Fox JD, Fenton JM, Miller GG, Caliendo AM, Preiksaitis JK, for the American Society of Transplantation Infectious Diseases Community of Practice and the Canadian Society of Trans-