Letters to the Editor

François Boemer2*
Olivier Ketelslegers3
Jean–Marc Minon3
Vincent Bours2
Roland Schoos2

2 Centre de Génétique Humaine, CHU
University of Liège, Liège, Belgium
3 Service de Biologie Clinique
CHR Citadelle
Liège, Belgium

* Address correspondence to this author at:
Bioc hemical Genetic Laboratory
CHU Sart-Tilman
University of Liège, B35
4000 Liège, Belgium
Fax +32-4-366-8474
E-mail F.Boemer@chu.ulg.ac.be

Previously published online at
DOI: 10.1373/clinchem.2008.122234

Analytical and Biological Variation of F2-Isoprostanes during the Menstrual Cycle

To the Editor:

F2-isoprostanes have been advocated as a specific and reliable marker of oxidative damage (1) despite a lack of data on their biological and analytical variation. Concurrent with a longitudinal study of oxidative stress during the menstrual cycle [the BioCycle Study (2)], we have characterized the components of biological and analytical variation of free plasma F2-isoprostanes in the context of the menstrual cycle. We describe several of the key characteristics of F2-isoprostanes as a biomarker.

Samples were collected from 9 healthy volunteers who met the major inclusion criteria of being a premenopausal woman 18–44 years of age and having regular menstrual cycles. Major exclusion criteria included use of hormonal preparations or contraceptive devices, pregnancy, a history of gynecologic abnormalities, recent infectious disease, routine intake of prescription and over-the-counter medications (including vitamin and mineral supplements), and a history of certain chronic diseases or conditions. Fasting blood samples were collected between 0700 and 0830 on days 2, 7, 12, 13, 14, 18, 22, and 27 of a single menstrual cycle. Collection and handling protocols were designed to minimize preanalytical variation. Samples were frozen at −80 °C and then analyzed, in duplicate, as a single set of consecutive samples by GC-MS (1) at the Molecular Epidemiology and Biomarker Research Laboratory at the University of Minnesota. Samples were analyzed within 6 months of collection.

The SAS software package (version 9.1.3; SAS Institute) was used for all analyses. We log-transformed F2-isoprostane data and used the following nested ANOVA model (3):

\[Y_{ijk} = \mu + \text{sub}_i + \text{day}_{ji} + \epsilon_{k(i)} \]

where \(Y_{ijk} \) describes the value for the kth replicate (\(k = 1, 2 \)) on the jth day (\(j = 1, 2, 3, \ldots, 8 \)) for the ith individual, \(\text{sub}_i \) is the random effect of \(i = 1, 2, 3, \ldots, 9 \), \(\mu \) is the grand mean, \(\text{day}_{ji} \) is the random effect of the ith individual, and \(\epsilon_{k(i)} \) is the random effect of the kth replicate nested in the jth day and the ith individual. Proportions of total variation from sources between (\(\text{sub}_i \)) and within (\(\text{day}_{ji} \)) individuals and from analytical factors (\(\epsilon_{k(i)} \)) were estimated from the relevant

References

Author Contributions: All authors confirmed that they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures of Potential Conflicts of Interest: No authors declared any potential conflicts of interest.

Role of Sponsor: The funding organizations played no role in the design of study, choice of enrolled patients, review and interpretation of data, or preparation or approval of manuscript.

homzygous mutation for IVS-I-110 (G>A), confirming the β+-thalassemic syndrome (4).

In the future, the availability of isotope-labeled synthetic peptides at an affordable cost will aid in developing quantitative approaches, and we recommend that the contribution of quantitative MS/MS results for Hb variants be evaluated for the discrimination of ambiguous disorders (i.e., Hb S/S and Hb S/β-thalassemia).

Our report and the series evaluated by Daniel and collaborators (5) are relevant arguments, demonstrating the reliability of the screening for Hb disorders by MS/MS. We hope that they will provide a powerful incentive for the widespread implementation of such application in neonatal-screening laboratories.

To the Editor:

F2-isoprostanes have been advocated as a specific and reliable marker of oxidative damage (1) despite a lack of data on their biological and analytical variation. Concurrent with a longitudinal study of oxidative stress during the menstrual cycle [the BioCycle Study (2)], we have characterized the components of biological and analytical variation of free plasma F2-isoprostanes in the context of the
variance components σ^2_B, σ^2_W, and σ^2_A, respectively. We determined CVs for each variance component and calculated the acceptability index (A_I)\(^1\) for quality specification.

The intraclass correlation coefficient (ICC) was defined as:

$$\text{ICC} = \frac{\sigma^2_B}{\sigma^2_B + \sigma^2_W};$$

the index of individuality (II) was defined as:

$$\text{II} = \frac{\sqrt{\text{CV}^2_W + \text{CV}^2_A}}{\text{CV}_B}.$$

Assuming homogeneity of variances, we defined the critical difference (CD) as:

$$\text{CD} = 2.77 \times \sqrt{\text{CV}^2_W + \text{CV}^2_A}.$$

Finally, we defined the number of samples, k, necessary to estimate the individual-specific mean as:

$$k = \left(1.96 \times \frac{\sqrt{\text{CV}^2_W + \text{CV}^2_A}}{\text{D}}\right)^2,$$

where D represents the acceptable deviation from the mean.

Participants had a mean (SD) age of 38.5 (4.7) years, and the mean menstrual cycle length was 28.4 (1.3) days. One individual was African American, and the remaining 8 (88.9%) were white. F2-isoprostanes were measured in 120 of 144 possible samples (9 participants \(\times\) 8 time points \(\times\) 2 replicate measurements). A duplicate sample was unavailable for 1 individual on days 2, 7, and 12; for 1 individual on days 2 and 22; and for 1 individual on days 7, 18, and 22. Fig. 1A presents F2-isoprostane concentrations for each study participant, and Fig. 1B presents the data with respect to each day in the menstrual cycle.

Most of the variation in F2-isoprostane concentrations occurred between study individuals (approximately 85%; $\sigma^2_B = 0.145$), whereas within-individual variation (approximately 13%; $\sigma^2_W = 0.022$) and analytical variation (approximately 2%; $\sigma^2_A = 0.004$) were smaller. Within-individual imprecision ($\text{CV}_W = 3.7\%$) exceeded that for analytical factors ($\text{CV}_A = 1.5\%$), for an A_I value of 0.41; thus analytical variation increased within-individual variation by only 8% (i.e., total $\text{CV}_W = \sqrt{(0.4 \times \text{CV}_W)^2 + (\text{CV}_A)^2} = 1.08$), thereby meeting “desirable” performance specifications (4). The high ICC value of 0.97 (95% CI, 0.96–0.98) ensured that decreases in study power due to analytical factors would necessitate a compensatory increase in sample size of 11%, at most.

The II value of 0.42 suggests that population reference limits for the detection of “abnormal” values

\(^1\) Nonstandard abbreviations: A_I, acceptability index; ICC, intraclass correlation coefficient; II, index of individuality; CD, critical difference.
are likely to be of limited utility. Use of a CD criterion suggests that a minimum difference of 1.0 ng/L between serial samples might be nonstochastic in nature. Estimation of the individual-specific mean F2-isoprostane concentration within 5%, 10%, or 20% of the actual mean value will require 13.8, 3.5, or 0.9 simultaneously assayed samples, respectively.

The number of participants in this study was small; however, studies on biological variation have demonstrated that estimates of intraindividual and interindividual variation are similar regardless of the number of individuals studied (5). Our estimates of variation agree with those of other studies that did not span the menstrual cycle and suggest that plasma F2-isoprostanes are sufficiently reliable for use as a biomarker of oxidative damage in epidemiologic studies of women.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures of Potential Conflicts of Interest: Upon manuscript submission, all authors completed the Disclosures of Potential Conflict of Interest form. Potential conflicts of interest:

Employment or Leadership: None declared.
Consultant or Advisory Role: M. Trevisan, Johnson & Johnson.
Stock Ownership: None declared.
Honoraria: M. Trevisan, Johnson & Johnson.
Research Funding: National Institute of Child Health and Human Development (Contract no. ADB-N01-HD-4-3394).
Expert Testimony: None declared.

Role of Sponsor: The funding organizations played a direct role in the design of the study, in the choice of enrolled patients, in the review and interpretation of data, and in the preparation and final approval of the manuscript.

References

Richard W. Browne1,2,*
Michael S. Bloom4
Enrique F. Schisterman5
Jean Wactawski-Wende3
Kathy Hovey3
Maurizio Trevisan1,6
Myron Gross7

Departments of 2 Biotechnical and Clinical Laboratory Sciences and 3 Social and Preventive Medicine University at Buffalo State University of New York Buffalo, NY 4 Department of Environmental Health Sciences University at Albany State University of New York Albany, NY 5 Epidemiology Branch Division of Epidemiology, Statistics & Prevention Research Eunice Kennedy Shriver National Institute of Child Health and Human Development Bethesda, MD 6 Health Sciences System of the Nevada System of Higher Education and the Department of Laboratory Medicine and Pathology Las Vegas, NV 7 School of Medicine University of Minnesota Minneapolis, MN

* Address correspondence to this author at:
Department of Biotechnical and Clinical Laboratory Sciences University at Buffalo State University of New York 26 Cary Hall Buffalo, New York 14214 Fax 716-829-3601 E-mail rwbrowne@buffalo.edu

Previously published online at DOI: 10.1373/clinchem.2008.122101

Serum 25-Hydroxyvitamin D Immunoassays: Recommendations for Correct Clinical Interpretation

To the Editor:

We read with interest the report by Leino et al. (1) concerning the analytical evaluation of the 25-hydroxyvitamin D3 (25-OH-D3)1 assay on the Roche Modular analyzer. They used clinical samples that were almost free of 25-hydroxyvitamin D2 (25-OH-D2) (<10 nmol/L) as confirmed by liquid chromatography–tandem mass spectrometry (LC-MS/MS) and found a good overall agreement between the results obtained with the Roche assay and those measured with the DiaSorin RIA and by LC-MS/MS. Although they acknowledged that the Roche assay, which does not measure 25-OH-D2, may underestimate vitamin D status in patients receiving vitamin D2, they considered that underestimating was probably not a clinical problem in their country (Finland), because vitamin D supplementation in adults is most commonly provided as vitamin D3.

We briefly discuss this point by re-