Letters to the Editor

Distinguishable. When measured by spectrophotometer, readings for all samples were higher than those for the 0 ng/L calibrator; OOM extracts provided signals that were well above those of the 400 ng/L calibrator.

In summary, simple aqueous extracts from small portions of 6 different OOM-associated tumors revealed very high FGF-23 concentrations as assessed by the calibrator assay; FGF-23 concentrations were also readily detectable by a modified rapid test that takes <30 min to complete. Like intraoperative parathyroid hormone assays (5), this rapid assay could be performed in or near the operating room, especially because visual inspection of the test plate was sufficient to detect FGF-23 in all 6 tumors tested. The assay may furthermore help define, intraoperatively, the disease-free margins of tumors located in areas that are difficult to access surgically.

Grant/Funding Support: This work was supported by grants from the National Institute of Diabetes and Digestive and Kidney Disease (ROI-46718-10 to H. Jüppner). Financial Disclosures: None declared. Acknowledgment: The authors would like to thank Makoto Okazaki for assistance with photographs.

References


Michael Mannstadt1
Carol Lorente2
Harald Jüppner1,3*

1 Endocrine Unit and 2 Pediatric Nephrology Unit
Massachusetts General Hospital and Harvard Medical School
Boston, MA
2 Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital and Dental Department
Harvard Vanguard Medical Associates
Boston, MA

1 Address correspondence to this author at:
Massachusetts General Hospital
Endocrine Unit, Thier 1051
55 Fruit Street
Boston, MA 02114
Fax (617) 726-7543
E-mail hjueppner@partners.org

DOI: 10.1373/clinchem.2007.102418

More Studies on Outcomes Using Biochemical Diagnostic Tests Are Needed: Findings from the Danish Society of Clinical Biochemistry

To the Editor:

The results of biochemical tests often lead to diagnostic and therapeutic interventions, and the real value of a test can be assessed only by taking into account the subsequent health outcomes. The importance of outcomes studies, and the challenges in performing them, was reviewed by Bruns in 2001 (1), who argued that this type of study should be performed more frequently, and that such studies should be used to determine whether new tests should be implemented in clinical practice.

To investigate the extent to which this recommendation has been realized, a working group on evidence-based clinical biochemistry established by the Danish Society of Clinical Biochemistry undertook a pilot study to record the number and type of reports of diagnostic biochemical outcome studies published from January 2005 to January 2006 in 4 medical journals: Clinical Chemistry, Clinical Chemistry and Laboratory Medicine, Lancet and the New England Journal of Medicine. To be included as an outcome study, the reported study had to be designed to investigate outcomes in relation to a clinical or an economical variable of a well-defined clinical application of a biochemical test.

To identify reports of outcome studies, 2 authors manually went through reports published in each of the journals within a 12-month period. Detailed information on original full-length reports considered diagnostic biochemical outcome studies was registered together with the total number of original articles. Technical Briefs, Letters, Short Communications, Editorials, and Reviews were not included. When there were discrepancies in report selection by the 2 authors scrutinizing the same journal issues, a consensus decision was made in the entire author group. Selected outcomes reports were classified as investigating (A) direct clinical mortality or morbidity; (B) other clinical variables such as length of hospital stay, readmission rate, or satisfaction with care; or (C) economic outcomes.

A total of 829 original articles were registered, of which only 7 studies (0.8%) were classified as diagnostic biochemical outcome studies (Table 1). Six (of 231) of these original articles were published in the New England Journal.
Three articles were classified as A, 2 as A/H11001B, 1 as A/H11001C, and 1 as B.

An outcome study addresses the question of whether use of the studied intervention (in this case a laboratory test) leads to an anticipated outcome (1, 2). The randomized controlled trial is a powerful design strategy for such studies, avoiding many pitfalls that occur with other study designs (2). Three of the outcome studies identified in this pilot study used a randomized controlled trial design that involved some variant of a test-treat-counsel policy to be compared with a policy not involving the testing element.

Before-and-after diagnostic assessment of clinical impact is another appropriate design for evaluating clinical outcomes of the use of laboratory tests (3), as elegantly demonstrated in the study by Stramer et al. (Table 1). This study investigated the effect of prospective screening of all blood donors for West Nile virus, and the results indicated that carriers of the virus were eliminated from the US Red Cross blood supplies, and no infections were detected among recipients after the introduction of this screening program.

We identified good examples of diagnostic biochemical outcome studies, but the absolute number of these studies was disappointingly low, indicating insufficient documentation of the health outcomes produced by diagnostic biochemical analyses. This insufficiency is probably attributable to multifaceted causes. An important aspect is undoubtedly the complexity and high costs of outcome studies (1, 4), because many steps lie between test findings and outcome. Research is needed that addresses

<table>
<thead>
<tr>
<th>Study report</th>
<th>Study design</th>
<th>Biochemical test</th>
<th>Outcomeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith AD et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005;352:2163–73.</td>
<td>Randomized controlled trial (N = 97), 12-month follow-up</td>
<td>Exhaled nitric oxide</td>
<td>Frequency of exacerbations of asthma and mean daily dose of inhaled corticosteroid (A+B)</td>
</tr>
<tr>
<td>Busch MP et al. Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N Engl J Med 2005;353:460–7.</td>
<td>Mass testing of donor blood by amplification testing of minipools and individual donations</td>
<td>West Nile Virus RNA</td>
<td>In high-prevalence regions individual testing is worthwhile (cost-effective) due to detecting low-level viremic donors preventing infection amongst recipients (A+C)</td>
</tr>
</tbody>
</table>

---

Table 1. Diagnostic biochemical outcome studies.a

<table>
<thead>
<tr>
<th>Study report</th>
<th>Study design</th>
<th>Biochemical test</th>
<th>Outcomeb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith AD et al. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 2005;352:2163–73.</td>
<td>Randomized controlled trial (N = 97), 12-month follow-up</td>
<td>Exhaled nitric oxide</td>
<td>Frequency of exacerbations of asthma and mean daily dose of inhaled corticosteroid (A+B)</td>
</tr>
<tr>
<td>Busch MP et al. Screening the blood supply for West Nile virus RNA by nucleic acid amplification testing. N Engl J Med 2005;353:460–7.</td>
<td>Mass testing of donor blood by amplification testing of minipools and individual donations</td>
<td>West Nile Virus RNA</td>
<td>In high-prevalence regions individual testing is worthwhile (cost-effective) due to detecting low-level viremic donors preventing infection amongst recipients (A+C)</td>
</tr>
</tbody>
</table>

---

b Outcomes classified as direct clinical outcome, i.e. mortality or morbidity (A); other clinical outcome, e.g., length of hospital stay, readmission rate, or satisfaction with care (B); and/or economy-related outcome (C).
methodological issues concerning design and conduct of test-outcome studies. Comprehensive discussions of this complex and important area are available (1–4), and in the textbook Evidence-Based Laboratory Medicine the chapter on assessment of outcomes is especially relevant (5).

Our purpose is to highlight the importance of moving from diagnostic accuracy studies to evaluations of the effects of test results on clinical decision-making and subsequent health outcomes. In agreement with other investigators (1–5), we support efforts to increasing the use of outcome studies to enhance the effectiveness of healthcare policy and decision-making.

Grant/Funding Support: None declared.

Financial Disclosures: None declared.

References

Jonna Skov Madsen1,*
Mads Nybo1
Erik Magid2
Jørgen Hilden3
Nete Hornung4
Torben Bjerregaard Larsen1
Lone Jørgensen5
Per Erik Jørgensen6

1 Department of Clinical Biochemistry, Pharmacology, and Genetics
Odense University Hospital
Odense, Denmark
2 Department of Clinical Biochemistry
Aamager Hospital
Copenhagen, Denmark
3 Department of Biostatistics
Copenhagen University
Copenhagen, Denmark
4 Department of Quality and Research
Randers Regional Hospital
Randers, Denmark
5 Research Unit for General Practice
Centre of Health and Society
Copenhagen, Denmark
6 Management Division
Glostrup University Hospital
Copenhagen, Denmark

* Address correspondence to this author at:
Department of Clinical Biochemistry, Pharmacology, and Genetics
Odense University Hospital
DK-5000, Odense C, Denmark
Fax 45-65-41-19-11
E-mail Jonna.Skov.Madsen@ouhregionsyddanmark.dk

DOI: 10.1373/clinchem.2007.101808

Electrospray Ionization Mass Spectrometric Analysis of the Globin Chains in Hemoglobin Heterozygotes Can Detect the Variants HbC, D, and E

To the Editor:

We would like to point out that 2 recent articles in this journal about human hemoglobin (Hb) analysis (1, 2) give the false impression that variant globin chains with <6 Da mass difference from normal cannot be detected in heterozygotes by electrospray ionization mass spectrometry (ESI-MS). Kleinert et al. (1) state: “Two important drawbacks of the MS methods should be mentioned. First, its insufﬁcient resolution prevents the detection of Hb mutations with small mass differences of the globin chains. The precision of normal low-resolution mass measurements was insufﬁcient to distinguish the wild-type β-chain from several β-chain variants such as HbC, D, or E”.

Brennan (2) comments similarly by stating that whereas traditional methods readily detect the majority of common variants, such as HbC, HbD, or HbE, “the substitutions involved in these, and similar charge variants (Glu→Lys, Glu→Gln, Asp→Asn, and Lys→Gln) involve mass changes of 1 Da or less, and are not detectable by mass spectrometry.” Kleinert et al. (1) also state: “Second, MS as described here is only a qualitative technique, and in particular, minor Hb fractions such as HbA1c or HbA2, which are important for diagnosis of diabetes mellitus or thalassemias, respectively, cannot be quantiﬁed.”

While we agree that ESI-MS cannot detect the zero mass change mutations (Lys→Gln and Leu→Ile), we maintain it is not necessary to resolve the variant and normal globin chains in heterozygotes to detect variants that differ in mass from normal by ±1 Da (Glu→Lys, Glu→Gln, Asp→Asn, Asn→Ile). In 2003, Rai et al. (3) showed that variants differing by 1 Da from normal can be detected if present at >10% abundance. In that report, the normal β-chain mass was determined with a precision of 0.05 Da SD, which resulted in a 0.10 Da mass change being detectable with 95% confidence. We routinely analyze Hb on a quadrupole instrument and, owing to improved performance since 2003, generally achieve ±0.03 Da SD on the normal β-chain when using the α-chain for internal calibration. For example, 50 normal blood samples analyzed over the last 4 months gave a mean β-chain mass of 15 867.255 Da (0.026 Da SD).