Cal differences, in both IEF and CE, between serum and serum spotted on Guthrie cards. We therefore expect that the rate of positive outcomes suggesting CDG will be similar.

In conclusion, analysis of a sufficient amount of serum spotted on a Guthrie card, stored at \(-20^\circ\text{C}\) and transported by air, gives information about the Tf profile similar to that obtained by analysis of serum. Although serum samples are preferable, we recommend the present procedure if Guthrie cards are used.

This work was supported by the Fonds voor Wetenschappelijk Onderzoek – Vlaanderen (Grant G.0371.02N), the Körber European Science Award 2004, and EUROGLYCANET.

References

Hubert A. Carchon* Célestin Nsibu Ndosimao Sandra Van Aerschot Jaak Jaeken

1 Department of Pediatrics Center for Metabolic Disease Katholieke Universiteit Leuven Leuven, Belgium
2 Department of Pediatrics University of Kinshasa Kinshasa, Congo

* Address correspondence to this author at: Center for Metabolic Disease, University Hospital Gasthuisberg, Herestraat 49, Box 817, B-3000 Leuven, Belgium. Fax 32-1634-7284; e-mail hubert.carchon@med.kuleuven.be.

DOI: 10.1373/clinchem.2005.063305

Prenatal Diagnosis of Guanidinoacetate Methyltransferase Deficiency: Increased Guanidinoacetate Concentrations in Amniotic Fluid

To the Editor:
Guanidinoacetate methyltransferase (GAMT; EC 2.1.1.2) deficiency (OMIM 601240) is an autosomal recessive disorder of creatine biosynthesis, characterized clinically by mental retardation, language delay, extrapyramidal movements, epilepsy, and autistic behavior (1). Biochemically, GAMT deficiency is characterized by depletion of creatine and accumulation of guanidinoacetate (GAA) in the brain and body fluids (2). Treatment by creatine supplementation (combined with arginine restriction and ornithine supplementation) partially restores \((\sim 70\%)\) cerebral creatine, reduces seizures, and improves behavior, but it does not reverse the mental retardation (3). We have described a method to measure GAA and creatine in plasma and urine by liquid chromatography–tandem mass spectrometry (LC-MS/MS) (4). In the present study, we validated this method for measurement of GAA and creatine in amniotic fluid, and we report the first GAMT prenatal diagnosis based on a combination of molecular and biochemical investigations.

We adapted a previously reported method to measure GAA and creatine in plasma (4) for amniotic fluid. Briefly, 50 \(\mu\)L of supernatant of amniotic fluid or aqueous calibrators were mixed with internal standards \(\text{[d}_6\text{-creatine (CDN isotopes) and [}^{13}\text{C}_2\text{]GAA (Dr. Ten Brink, VU University Medical Center, Amsterdam, The Netherlands)). Samples were ex-
We have validated a rapid method to measure GAA and creatine in amniotic fluid and have determined expected values at 15–20 weeks of amenorrhea. The feasibility of GAA measurement in amniotic fluid by gas chromatography–mass spectrometry has been reported (5). Here we describe the first prenatal diagnosis confirming that increased GAA in amniotic fluid appears to be pathognomonic for GAMT deficiency. Measurement of GAA in amniotic fluid may therefore be useful in the prenatal diagnosis of GAMT deficiency.

We thank Brigitte Soubeyrand and Luc Anselmini for excellent technical support. This work was supported by a grant from the French Ministry of Health–PHRC regional 2003; Pr des Portes.

References

Table 1. Reference intervals for GAA and creatine in amniotic fluid and results obtained for affected pregnancy.

<table>
<thead>
<tr>
<th>Gestational age*</th>
<th>GAA, μmol/L</th>
<th>Creatine, μmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Range</td>
</tr>
<tr>
<td>All ages (n = 82)</td>
<td>2.62 (0.50)</td>
<td>1.55–4.43</td>
</tr>
<tr>
<td>15 WA (n = 10)</td>
<td>2.96 (0.70)</td>
<td>2.14–4.43</td>
</tr>
<tr>
<td>16 WA (n = 21)</td>
<td>2.67 (0.46)</td>
<td>2.04–4.06</td>
</tr>
<tr>
<td>17 WA (n = 21)</td>
<td>2.56 (0.41)</td>
<td>1.66–3.48</td>
</tr>
<tr>
<td>18 WA (n = 15)</td>
<td>2.63 (0.49)</td>
<td>1.93–3.53</td>
</tr>
<tr>
<td>19 WA (n = 10)</td>
<td>2.40 (0.52)</td>
<td>1.55–3.62</td>
</tr>
<tr>
<td>20 WA (n = 5)</td>
<td>2.46 (0.25)</td>
<td>2.27–2.87</td>
</tr>
</tbody>
</table>

*Gestational ages are given in weeks of amenorrhea (WA).
Smoking and smoking cessation are associated with weight changes (1), and many smokers give weight gain as a primary reason for not trying to quit smoking (2). A relationship has been reported between smoking and plasma concentrations of ghrelin, a 28-amino acid growth hormone–releasing peptide secreted mainly by the stomach (3–5). Our primary aim was to determine whether smoking has an acute effect on plasma ghrelin concentrations.

We enrolled 36 healthy volunteers, 28 men [mean (SD) age, 28.4 (7.5) years] and 8 women [30.4 (9.8) years]; 26 volunteers were smokers and 10 were nonsmokers. The study was approved by the Ethics Committee of our institution, and informed, written consent was obtained from each participant. None of the individuals had a history of gastric surgery or any serious health problem.

Smoking history and body mass index (BMI) were determined for all participants. Blood samples were collected after overnight fasting, and plasma was frozen in aliquots at −80 °C immediately after centrifugation (1600g for 15 min at 4 °C).

We measured ghrelin with an enzyme immunoassay (Phoenix Pharmaceuticals). The intraassay CV was <5%, the interassay CV was <14%, and the lower detection limit was 0.1 μg/L. The participants smoked 1 filtered cigarette containing 0.8 mg of nicotine under highly regulated conditions. Every 15 s, a puff lasting 5 s was taken, and the whole cigarette had to be smoked within 5 min. Plasma ghrelin concentrations were determined at 0, 2, 5, 15, and 60 min after the initiation of smoking.

We used the Student t-test to compare the mean values for the studied groups. Significance between groups was set at P = 0.05. The mean (SD) plasma concentrations for baseline and at 2, 5, 15, and 60 min are shown in Fig. 1. We observed significant increases (P <0.001) from baseline at 2, 5, and 15 min after smoking. A separate analysis revealed that increases occurred in both smokers and nonsmokers. In general, peak values were observed at 2 min (Fig. 1). Baseline mean values for smokers did not differ significantly from those for nonsmokers. We observed no significant difference in mean (SD) BMI between men [25.8 (2.5) kg/m²] and women [23.4 (5.1) kg/m²; P = 0.73] or between smokers [25.8 (3.2) kg/m²] and nonsmokers [23.7 (3.3) kg/m²; P = 0.1].

This study demonstrates the acute effect of cigarette smoking on plasma concentrations of the novel orexigenic hormone ghrelin. The most interesting finding of this study was the unexpected increase in ghrelin concentrations shortly after smoking. The effect of smoking 1 cigarette continued for at least 15 min and was independent of the BMI of each individual. The most intense increase was noted 2 min after smoking initiation. Given the known anorexic action of smoking (6), a decrease in ghrelin concentrations might be expected as an acute effect of smoking. Alcohol has also exhibited an unexpected acute inhibitory effect on ghrelin secretion in healthy individuals, despite its strong orexigenic influence in humans (7).

We speculate that this acute increase of ghrelin during smoking is related to adverse effects on gastric mucosa, gastric motility, mucosal blood flow, and concentrations of free radicals (8). Enhancement of ghrelin secretion could also be an indirect influence mediated by other factors, including growth hormone (nicotine increases the growth hormone concentration) (9), leptin (inverse correlation with ghrelin concentrations) (10), and vagal nerve stimulation (smoking affects vagal nerve activity) (11). Our finding that smoking is more likely to produce an acute release of intracellular ghrelin into the circulation rather than a time- or dose-dependent stomach secretion is partially in agreement with the hypothesis of investigators (4, 5) that circulating ghrelin concentrations are related to the time elapsed after smoking. Rather than being de-