Because the enzymatic products are resolved on the basis of their m/z ratios, we are exploring the use of MS/MS for the quantification of multiple enzymes in a single dried blood spot by use of a single-platform analytical method in much the same way that MS/MS is currently used to determine the concentrations of multiple metabolites in a single dried blood spot.

This work was supported by grants from Genzyme Inc. and from the NIH (Grant DK67859). We are grateful to Dr. Martin Sadilek for technical assistance with ESI-MS/MS.

References

To promote further investigation of an association of OPRM1 mutations with altered opioid effects or substance dependence, we describe a rapid screening method for several mutations in the OPRM1 gene. SNPs in the OPRM1 gene that qualify for large-scale screening in patients were selected to become part of the screening method when they met one of the following three criteria: (a) in vitro or human studies had revealed a functional consequence; (b) the mutation causes an amino acid exchange, encoding an altered opioid receptor protein; or (c) the SNP has a high reported allelic frequency, which implies that it could have immediate clinical relevance for the administration of opioids in a large part of the population. On that basis, a total of 23 SNPs in the promoter region; in exons 1, 2, and 3; and in the second intron were chosen for screening (see Table 1 for details).

To this we added the SNPs −54G>T in the promoter, 24G>A in exon 1 and 942G>A in exon 3 because their close proximity to SNPs −38C>A, 17C>T and 877G>A, respectively, allowed their detection by use of the already available PCR templates with a small extension of the respective assays (see the Data Supplement that accompanies the online version of this Technical Brief at http://wwwclinchem.org/content/vol50/issue3/). Thus, our method includes a total of 26 SNPs.

To detect the 26 selected SNPs in OPRM1, we developed a set of 14 assays (Table 1) based on the real-time pyrophosphate detection method Pyrosequencing™ (13).
Table 1. SNPs in the *OPRM1* gene detected by pyrosequencing.

<table>
<thead>
<tr>
<th>Assay no.</th>
<th>Mutation*</th>
<th>Amino acid location</th>
<th>Exon/Intron/ Promoter</th>
<th>Nucleotide sequence to be analyzed, a</th>
<th>dNTP* dispensing order</th>
<th>Pyrosequencing assay type</th>
<th>Mutated allele frequency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-2044C>A</td>
<td>Promoter</td>
<td>TCT/GCTCTGAACCTA</td>
<td>GTCTGACTCT</td>
<td>Reverse simplex</td>
<td>0.8 (12)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1793T>A</td>
<td></td>
<td>A/TTTTAAGTCTGAGAAGAC</td>
<td>GTATACGTATG</td>
<td>Forward simplex</td>
<td>1.4 (11)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-1699(-1698)insT</td>
<td></td>
<td>T/GACTCCAGCTGAGC</td>
<td>CGTGACTGAGC</td>
<td>Forward simplex</td>
<td>1.4 (11)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1320A>G</td>
<td></td>
<td>CT/CCAGCTGG</td>
<td>GCTCTAGT</td>
<td>Reverse simplex</td>
<td>1.4 (11)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-692G>C</td>
<td></td>
<td>AC/GAAACTGTGGAAGAAC</td>
<td>TAGTACTG</td>
<td>Reverse simplex</td>
<td>4.3 (11)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-172G>T</td>
<td></td>
<td>GC/ATGAGCATCTGAGC</td>
<td>CGACGTGACGATG</td>
<td>Reverse duplex</td>
<td>11.4 (11)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-54G>T</td>
<td></td>
<td>G/TCCAGCGACACGGAGA/ CTTTTCCGATTG</td>
<td>Reverse simplex</td>
<td>1.4 (11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12C>G</td>
<td>S4R</td>
<td>C/TGTGGGGG/ACA GGCACGCACGCTCC</td>
<td>ACTGATGAGACGCGCTCCA</td>
<td>Reverse simplex</td>
<td>1.4-5 (7, 11)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>118A>G</td>
<td>N40D</td>
<td>C/TGCCATCTAAGGGG</td>
<td>GCTGATC</td>
<td>Reverse simplex</td>
<td>1.9 (6)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>440C>G</td>
<td>S147C</td>
<td>CTC/GCATAGATTACTA/CGACTGATC</td>
<td>GCTGCGATAGATAGCTAGA</td>
<td>Forward simplex</td>
<td><1 (6)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>IVS2 31G>A</td>
<td>N152D</td>
<td></td>
<td></td>
<td></td>
<td>~1.4 (11, 27)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>IVS2 397T>A</td>
<td></td>
<td>GGA/TTTGGCAATATCTGAG</td>
<td>TCTATGTCACAGC</td>
<td>Reverse duplex</td>
<td>1.4 (11)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>779G>A</td>
<td>R260H</td>
<td>T/CCTCTCCCTCAGGCGCGA</td>
<td>GCTGCTCTACTG</td>
<td>Reverse simplex</td>
<td>4.2-14.3 (10, 11)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>877G>A</td>
<td>I877V</td>
<td>AC/TGTGAACACA</td>
<td>GCTGATC</td>
<td>Reverse duplex</td>
<td><1 (6)</td>
<td></td>
</tr>
</tbody>
</table>

a SNPs are listed according to their location in the *OPRM1* gene. The allelic frequencies are indicated according to the literature and as found in our study population.

b The sequence to analyze given is long enough to be accepted by the Pyrosequencing software when entering the assay. Note that some nucleotides entered at the end of that sequence will not be analyzed with the dispensed deoxynucleotide triphosphates.

c dNTP, deoxynucleotide triphosphate.
DNA from 116 healthy Caucasians who had given written informed consent was used to generate OPRM1 DNA fragments. Genotyping was approved by the University of Frankfurt Medical Faculty Ethics Review Board. Primers were designed with “Oligo” primer analysis software (Molecular Biology Insight, Inc.) with use of the OPRM1 nucleotide sequences provided with Ensembl Gene ID ENSG00000112038 (Table 2 in the online Data Supplement). A standard thermal cycling protocol (see Table 2 in the online Data Supplement for the number of cycles) was used. Cycling was for 30 s at 95 °C, 60 s at primer-specific temperatures (Table 2 in the online Data Supplement), and 30 s at 72 °C. Pyrosequencing primers (Table 2 in the online Data Supplement) were designed with use of SNP Primer Design software (Pyrosequencing AB; http://www.pyrosequencing.com). A series of simplex, duplex, and triplex assays were generated on a PSQ 96MA (Pyrosequencing AB; Table 1, Fig. 1, and online Data Supple-
ment). In most cases, reverse assays were identified to be best suited for detection. A forward assay was applied in the case of the SNPs −1793T>A and −1698(−1699)insT, and the duplex assay covering 440C>G and 454A>G (see the online Data Supplement). For each pyrosequencing assay, PCR template for each OPRM1 SNP was incubated in a shaker (10 min) with streptavidin-coated Sepharose beads (Amersham Pharmacia Biotech) and prepared with 672 mL/L 96% ethanol and denaturation buffer in a Vacuum Prep Workstation (Pyrosequencing AB) for transfer of the biotinylated templates into 55 µL of the corresponding 0.35 µmol/L sequencing primer (Table 2 in the online Data Supplement). Sequencing took place in a PSQ 96MA after incubation for 2 min at 80 °C. For confirmation of the pyrosequencing results, a total of 48 samples [4 randomly chosen samples for each of the 12 DNA templates (Table 1), including 2 mutated DNAs where available] were sequenced by conventional methods on an ABI PRISM 310 Genetic Analyzer (PE/Applied Biosystems). For haplotype analysis, all pyrosequencing results were submitted to HAPLOTYPER computer software for Linux (Harvard University) (14). As an alternative to haplotyping by software, molecular haplotyping would be possible with pyrosequencing using allele-specific PCR templates (15) in an otherwise identical assay.

The observed pyrograms corresponded to the predicted theoretical assay outcomes, allowing clear identification of the genotypes in all SNPs. Pyrosequencing results agreed with the results obtained with conventional sequencing of random samples. A pyrogram exemplifying the assay for the 118A>G SNP is shown in Fig. 1; more examples are available in the online Data Supplement. The observed allelic frequencies of the mutations are given in Table 1. The most frequent SNP was 691C>G in intron 2 (frequency of the mutated allele, 53.4%). The 118A>G SNP in exon 1 was found at a frequency of 12.1% (mutated allele). The observed allelic frequencies corresponded to those published previously (Table 1) except for the −692C and −38A alleles, which had previously been reported to have frequencies of 4.3% and 1.4–5% (11), respectively, but which we did not find in any of the 116 participants in our study. We found fewer carriers than reported previously for the mutated allele −172T [3.4% vs 11.4% (11)], whereas we found the mutated 691G allele at a higher frequency in our study population [53.4% vs 42.9% (11, 16)]. The most frequent haplotype (39%) contained an IVS2 691G>C mutation and no mutation at any of the other 25 analyzed loci. The second most frequent haplotype had no mutations in any of the 26 positions (frequency, 33%). A haplotype with a mutation at only 118A>G was found at a frequency of 10%, and a combination of IVS2 mutations 31G>A and 691G>C was found at a frequency of 7%. The 118G allele was found together with the IVS2 691G>C allele, without any other mutations, at a frequency of 1.3%.

Receptors encoded by the mutated allele of the 118A>G SNP were reported to have a threefold higher binding affinity for β-endorphin compared with wild-type receptors in AV-12 cells transfected with the 118G cDNA (6). However, the binding in HEK293 cells transfected with mutated 118G cDNA was not affected (17). Clinical data have indicated decreased opioid activity in heterozygous carriers of the 118A>G SNP (3, 4, 18). In a previous report, a patient not responding to morphine therapy was heterozygous for the 118G allele, whereas a patient who responded was wild type at this position (19). In another report, a 118G carrier with renal failure tolerated high plasma M6G, whereas a patient who did not have the mutation was sedated as a consequence of M6G accumulation (20). The mutated allele of SNP 802T>C SNP has been shown to produce altered receptor desensitization and receptor signaling with decreased G-protein coupling (21). The affinity of μ-opioid-receptor agonists such as morphine; diprenorphine; δ-Ala(2),N-MePhe(4),Gly(5)ol-enkephalin (DAMGO); β-endorphin; metenkephalin; and dynorphine was not changed, but the potency and efficacy of DAMGO, β-endorphin, and morphine were decreased (22). Mutated alleles containing SNPs 779A>G and 877G>A are possibly involved in altered desensitization of the μ-opioid receptor (23). Finally, mutated alleles carrying the −T1793A SNP and an inserted thymine at position −1699 were found to potentially influence transcriptional regulation (24).

Thus, evidence from in vitro experiments and clinical studies points to a functional importance of several OP RM1 SNPs. Research on SNPs in the OP RM1 gene is, therefore, of immediate interest for assessing the clinical effects of opioid analgesics and for studying the epidemiology of substance addiction. We provide a screening method suitable for large-scale genetic diagnosis of 26 SNPs in OP RM1. The method includes SNPs with reported high allelic frequencies as well as rare SNPs with demonstrated or potential functional relevance. The method presented could facilitate identification of OP RM1 mutations with clinical relevance and thus enable individualized opioid pharmacotherapy in the near future.

This work was supported by Dr. Robert Pfleger Stiftung, Bamberg, Germany.

DOI: 10.1373/clinchem.2003.027607

Comparison of Methods for Polycythemia Rubra Vera-1 mRNA Quantification in Whole-Blood Leukocytes and Purified Granulocytes, Lars Palmqvist,3 Philipp Goertler,4 Carina Wasslavik,1 Peter Johansson,2,5 Björn Andreasson,2,3 Sooodabeh Safai-Kutti,1 Jack Kutti,2 Heike L. Pahl,3 and Anne Ricksten1 (1 Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine and 2 Hematology and Coagulation Section, Department of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden; 3 Department of Medicine, Uddevalla Hospital, Uddevalla, Sweden; 4 Department of Experimental Anesthesiology, University Hospital, Freiburg, Germany; * address correspondence to this author at: Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, SE-413 45 Göteborg, Sweden; fax 46-31-828458, e-mail anne.ricksten@clinchem.gu.se)

In the absence of pathognomonic markers, the diagnosis of the two chronic myeloproliferative disorders polycythemia vera (PV) and essential thrombocytosis (ET) has relied on a set of clinical and laboratory criteria (1–5). The cloning of the cell surface receptor polycythemia rubra vera-1 (PRV-1) has recently been described (6), and the consistent overexpression of PRV-1 mRNA observed in PV patients indicates that this might constitute a new diagnostic marker for the disease. In the initial cohort examined by Northern blot analysis, PRV-1 expression was increased in all PV patients examined as well as in some ET patients, but not in healthy controls (6). These results have also been verified and extended using a quantitative reverse transcription-PCR (RT-PCR) assay. All PV as well as 50% of ET patients displayed increased PRV-1 expression (7, 8). Patients with secondary erythrocytosis and healthy controls tested showed PRV-1 concentrations within the reference interval. Interestingly, the observed increase in PRV-1 mRNA expression does not lead to a corresponding increase in protein expression on the cell surface (9). Erythropoietin-independent colony growth and PRV-1 overexpression seem to go hand in hand in both PV and ET patients (7), raising the hope that RT-PCR for PRV-1 could replace the need for the technically demanding erythropoietin-independent colony assay, although a recent report suggests that the erythropoietin-independent colony growth assay is a more reliable method (10). The aim of the present work was to develop a quantitative RT-PCR method to measure PRV-1 transcripts in whole-blood leukocytes and to determine the potential usefulness of the method in the differential diagnosis of polycythemias and thrombocytosis. The assay was compared with a method using isolated granulocytes (7, 9) to assess whether granulocyte purification is necessary before RNA extraction. Granulocyte fractionation is cumbersome to standardize, and an assay that uses whole-blood leukocytes would simplify the analysis and perhaps make it more suitable for a routine laboratory setting.

Blood samples were collected from 78 patients with