Improved Specificity of Newborn Screening for Congenital Adrenal Hyperplasia by Second-Tier Steroid Profiling Using Tandem Mass Spectrometry

JEAN M. LACEY,1 CARLA Z. MINUTTI,1,2 MARK J. MAGERA,1 ANGELA L. TAUSCHER,1 BRUNO CASETTA,6 MARK MCCANN,7 JAMES LYMPS,5 SI HOUN HAHN,1,3,4 PIERO RINALDO,1,3,4 and DIETRICH MATERN1,3,4*

Background: Newborn screening for congenital adrenal hyperplasia (CAH) involves measurement of 17α-hydroxyprogesterone (17-OHP), usually by immunoassay. Because this testing has been characterized by high false-positive rates, we developed a steroid profiling method that uses liquid chromatography–tandem mass spectrometry (LC-MS/MS) to measure 17-OHP, androstenedione, and cortisol simultaneously in blood spots.

Methods: Whole blood was eluted from a 4.8-mm (3/16-inch) dried-blood spot by an aqueous solution containing the deuterium-labeled internal standard d8-17-OHP. 17-OHP, androstenedione, and cortisol were extracted into diethyl ether, which was subsequently evaporated and the residue dissolved in LC mobile phase. The steroids were quantified in the selected-reaction monitoring mode by use of peak areas in reference to the stable-isotope-labeled internal standard d8-17-OHP. Intra- and interassay CVs for 17-OHP were 7.2–20% and 3.9–18%, respectively, at concentrations of 2, 30, and 50 μg/L. At a cutoff for 17-OHP of 12.5 μg/L and a cutoff of 3.75 for the sum of peak areas for 17-OHP and androstenedione divided by the peak area for cortisol, 86 of the 101 false-positive samples were within reference values by LC-MS/MS, whereas the 742 normal and 14 true-positive results obtained by conventional screening were correctly classified.

Conclusion: Steroid profiling in blood spots can identify false-positive results obtained by conventional newborn screening for CAH.

© 2004 American Association for Clinical Chemistry

Congenital adrenal hyperplasia (CAH)8 is caused by inherited defects in steroid biosynthesis, in particular 21-hydroxylase deficiency. The resulting hormone imbalances with decreased glucocorticoids and mineralocorticoids and increased 17α-hydroxyprogesterone (17-OHP) and androgens can lead to life-threatening salt-wasting crises in the newborn period and incorrect gender assignment of virilized females (1, 2). Hormone replacement therapy when initiated early enables a substantial reduction in morbidity and mortality, making newborn screening for CAH highly desirable. Since 1977, when immunoassays for 17-OHP became available, 35 states and several countries have included CAH in their newborn-screening programs (3). The main reason for an incomplete implementation of CAH newborn screening is the large number of false-positive results associated with traditional immunoassays (1). Premature newborns, for example, are often subjected to unnecessary follow-up investigations for secondary 17-OHP increases that could be attributable to

8 Nonstandard abbreviations: CAH, congenital adrenal hyperplasia; 17-OHP, 17α-hydroxyprogesterone; LC-MS/MS, liquid chromatography–tandem mass spectrometry; SRM, selected reaction monitoring; and CI, confidence interval.
stress or physiologically delayed expression of 11-β-hydroxylase (4, 5). Furthermore, the specificity of immunoassays is compromised by cross-reactivity of antibodies with other steroids (6). Adjustments of cutoff values for 17-OHP based on birth weight and gestational age also do not significantly reduce the false-positive rate (5, 7).

To improve this situation, we developed and validated a new method based on the simultaneous determination of 17-OHP, cortisol, and androstenedione to achieve a steroid profile better suited to reduce the rate of false-positive results than direct measurement of 17-OHP alone, as described recently by others for plasma and blood spots (8–10).

Materials and Methods

Samples
A total of 857 newborn-screening blood spot samples were provided by the newborn-screening laboratory at the Minnesota Department of Health and Mayo Clinic Biochemical Genetics Laboratory after removal of all personal identifying information. The samples were also blinded with respect to the outcome of routine newborn screening for CAH until testing by liquid chromatography–tandem mass spectrometry (LC-MS/MS) was completed. The analysis of these specimens was approved by the Mayo Clinic’s Institutional Review Board.

Materials
17-OHP, androstenedione, and cortisol were purchased from Sigma, and d₈-17-OHP was purchased from CDN Isotopes Inc. Working solutions were established by diluting stock solutions (1 g/L) prepared in methanol with reverse osmosis water. Dried blood spots for calibration and quality-control monitoring were obtained from the Newborn Screening Quality Assurance Program at the CDC (Atlanta, GA). All other chemicals and solvents were of the highest purity available from commercial sources and used without further purification.

Assay Procedures
Additional dried-blood spots for calibration, recovery, precision, and stability studies were prepared as follows. Red blood cells were washed repeatedly with equal volumes of saline and centrifuged, and the supernatant and buffy coat were aspirated and discarded. The washed cells were combined with serum in volumes to obtain a whole-blood pool with a final hematocrit of 55%. A stock solution of 17-OHP was prepared by dissolving 100 mg in 500 mL of ethanol. Calibrators were prepared by diluting the stock solution with saline, which was then added to a whole-blood pool to achieve concentrations of 0 (no added 17-OHP), 10, 20, 40, 60, 80, 100, and 160 μg/L. To hemolyze the blood, it was frozen (−20 °C) and thawed; it was then spotted on filter paper (S&S 903; Schleicher & Schuell). After the blood spots were dried overnight at room temperature, they were transferred to zip-lock bags with desiccant and stored at −20 °C until use.

Sample Preparation and Analysis
A 4.8-mm (3/16-inch) disc was punched from each dried-blood-spot calibrator, control, and sample and placed in a snap-cap disposable centrifuge tube. A solution of the internal standard (d₈-17-OHP in water; 500 μL; 0.375 ng) was added, and the discs were allowed to elute at room temperature on an orbital shaker for 30 min. Diethyl ether (3 mL) was added, and the aqueous phase was extracted by a combination of shaking and vortex-mixing for 1 min. The diethyl ether phase was then transferred by Pasteur pipette to a clean glass tube. Another 3 mL of diethyl ether was added, extracted for 1 min, transferred to tubes, and evaporated to dryness in a 40 °C water bath under a gentle stream of nitrogen. We then added 50 μL of methanol–water (50:50 by volume) to reconstitute the remaining residue and transferred this solution to LC autosampler vials.

Methods
An API 3000 triple-quadrupole mass spectrometer (Applied Biosystems/MDS Sciex) operated in positive ion mode (source voltage, 5500 V) was used. The system also included a Perkin-Elmer Series 200 autosampler and a Perkin-Elmer Micro LC pump. Separation of 17-OHP, d₈-17-OHP, androstenedione, and cortisol from the bulk of the specimen matrix was achieved by use of a narrow-bore LC column [Symmetry C₁₈, 50 × 2.1 mm (i.d.); Waters]. Autosampler injections of 20 μL were made, and a gradient elution program was implemented with a reversed-phase mobile phase composed of water (solvent A) and methanol (solvent B). The LC program consisted of a linear gradient from 50% to 100% B in 5 min followed by a washing step at 100% B for 3 min and a subsequent 4-min reequilibration step at initial conditions. The column flow of 250 μL/min directly entered the TurboIonSpray ionization source, which was operated with the turbo gas on (6 L/min; sensor temperature, 400 °C). 17-OHP, d₈-17-OHP, cortisol, and androstenedione eluted at times from 2 to 4 min. A 12-min total run was required to elute an unrelated, water-soluble compound released by the filter paper with a retention time of 9 min (data not shown).

All results were generated in positive ion mode with a declustering potential of 36 V. Mass calibration and resolution of both resolving quadrupoles were automatically optimized by use of a poly(propylene)glycol solution introduced by an infusion pump. Unit mass resolution (0.7 atomic mass units full-width at half height) was specified for both Q₁ and Q₃. Collision-activated dissociation MS/MS was performed through the closed-design Q₂ collision cell, operating with nitrogen as collision gas. The optimum collision energy of 6 V (laboratory frame) was determined automatically by the AutoTune algorithm.

MS/MS product-ion scans of calibrators were acquired in continuous flow mode by connecting an infusion pump directly to the TurboIonSpray probe. For MS/MS optimi-
zation, a 10 μmol/L solution was prepared in methanol–water (50:50 by volume) containing 0.25 g/L formic acid and infused at a flow rate of 10 μL/min. For the selected-reaction monitoring (SRM) mode, the instrument was optimized automatically by the built-in algorithm to monitor the transitions m/z 331.2 to 97.0, m/z 392.2 to 100.0, m/z 287.2 to 97.0, and m/z 363.3 to 121.2 for 17-OHP, d₈-17-OHP, androstenedione, and cortisol, respectively.

CALCULATIONS AND DEFINITION OF CUT-OFF VALUES
The concentration of 17-OHP was calculated by the TurboQuan software (Applied Biosystems/MDS Sciex) based on the area under the curves for 17-OHP and the internal standard (d₈-17-OHP). To characterize the diagnostic accuracy of the method, we selected various cut-off values for 17-OHP and for another index, the sum of the peak areas for 17-OHP and androstenedione divided by the peak area for cortisol. For each cut-off value, sensitivity and specificity were examined. Exact 95% binomial confidence intervals were computed for each of these characteristics. We considered a test positive only when two indices were above the respective cut-off value.

Results
The positive-mode SRM transitions for 17-OHP, androstenedione, cortisol, and d₈-17-OHP were determined by infusion of pure calibrators (10 μmol/L). Collisionally activated dissociation of 17-OHP yielding products at m/z 97.0 and m/z 109.1 has been reported (9); our instrument tuning algorithm favored the m/z 331.2 to 97.0 transition. Likewise, the internal standard d₈-17-OHP was optimized for the transition m/z 392.2 to 100.0, reflecting the mass difference between unlabeled and labeled 17-OHP. Androstenedione and cortisol exhibited similar results with the transitions m/z 287.2 to 97.0 and m/z 363.3 to 121.2, respectively.

Shown in Fig. 1 are the steroid profiles for blood spots from a healthy control (Fig. 1A), a case who was subsequently ruled to be a false-positive event (Fig. 1B), and a newborn with CAH (Fig. 1C). As illustrated in Fig. 1B, a large majority of the false-positive cases had a 17-OHP concentration <10 μg/L by LC-MS/MS, accompanied by a substantial cortisol peak. Samples from confirmed cases of CAH characteristically lacked cortisol, whereas 17-OHP and androstenedione were increased. Gradient LC elution was necessary to provide the separation of the steroids, most importantly, from a late eluting unrelated component that gave a strong signal in the SRM transition for the internal standard. Attempts at eliminating this compound were unsuccessful, and its elution before subsequent injections remained important because signal contamination by “ghosting” was evident.

LINEARITY
The linearity of the method for 17-OHP was evaluated by interassay analysis of the blood-spot calibrators from 0 to 160 μg/L over a period of 7 days. The mean slope, y-intercept, and coefficient of linear regression (r²) were 0.707 [95% confidence interval (CI), 0.667–0.749], 0.088 μg/L (95% CI, 0.054–0.121 μg/L), and 0.995 (95% CI, 0.990–0.999), respectively.

PRECISION, STABILITY, AND SENSITIVITY STUDIES
We determined method precision by analyzing six replicates per day of blood-spot samples containing 2, 30, and 50 μg/L 17-OHP over a 6-day period. The intraassay CVs were 20%, 18%, and 7.2%, respectively. Interassay CVs were 18%, 9.6%, and 3.9%, respectively, for the same samples (Table 1). The stability of prepared specimens was investigated by repeat injection of five blood-spot samples (selected over a concentration range of 2.1–114.7 μg/L) with interim storage at 4°C. The data indicated stability of 17-OHP and d₈-17-OHP stored up to 72 h after sample preparation. We assessed analytic sensitivity by determining the signal-to-noise ratio for extracted SRM chromatograms, using as a criterion a minimum of signal-to-noise ratio >3:1.

METHOD COMPARISON AND CUT-OFF VALUES
To compare our LC-MS/MS-based method with currently available immunoassays, we measured 17-OHP, androstenedione, and cortisol in blood spots from newborns with and without CAH. The data indicated that the LC-MS/MS method was highly sensitive and specific, with excellent precision and accuracy.

Table 1. Precision of LC-MS/MS method.

<table>
<thead>
<tr>
<th>No. of aliquots</th>
<th>Measured 17-OHP, μg/L</th>
<th>CV, % (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intra assay</td>
</tr>
<tr>
<td>6</td>
<td>1.9 (0.4)</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>37.0 (3.6)</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>51.0 (2.0)</td>
<td>7.2</td>
</tr>
</tbody>
</table>

a Samples selected from blood spots provided by the CDC Newborn Screening Quality Assurance Program.

b Mean (SD) of all values.
stenedione, and cortisol in 857 blood spots that were previously analyzed by an immunoassay as part of the Minnesota newborn-screening program. All identifiers were removed from these samples, and results were compared after our analysis. Of the 857 blood spots, 115 tested abnormal by immunoassay, necessitating follow-up evaluations of the newborns. Only 14 were eventually diagnosed with CAH deficiency.

As shown in Fig. 2, the LC-MS/MS method yielded consistently lower values for 17-OHP than the immunoassay. This is not surprising, considering the known limitations of the immunoassay and the ability of MS/MS to detect a specific analyte without interference. Cutoff values were established after the code indicating the final diagnosis for each blood spot was broken. The cutoff for 17-OHP was set at 12.5 μg/L [100% sensitivity (95% CI, 76.8–100%); 91.2% specificity (95% CI, 89.1–93.1%)], and that for the ratio of the sum of 17-OHP and androstenedione divided by cortisol was set at 3.75 [100% sensitivity (95% CI, 76.8–100%); 94.4% specificity (95% CI, 92.7–95.9%)]. Use of both cutoff values together gave 100% sensitivity (95% CI, 76.8–100%) and 98.1% specificity (95% CI, 96.9–98.9%). When we used the 17-OHP cutoff value alone, only 41 of the 101 blood spots that gave false-positive results by the immunoassay were abnormal by LC-MS/MS. The number of false-positive results was further reduced (for a total reduction of 85%) when we included the peak-area ratio of 17-OHP plus androstenedione divided by cortisol in the interpretation (Fig. 3).

Discussion

MS/MS allows rapid, highly sensitive, and specific determination of analytes in complex mixtures, giving higher accuracy and efficiency than other, more traditional analytical platforms such as HPLC and immunoassays (11). Over the last decade, MS/MS has also been incorporated into a growing number of newborn-screening laboratories. In this arena, MS/MS is typically used for the diagnosis of more than 30 inborn errors of amino acid, organic acid, and fatty acid metabolism by analysis of amino acids and acylcarnitines (12,13). These analyses are performed simultaneously on the same blood-spot sample and give metabolite profiles that allow more accurate diagnoses by the added value of metabolite ratios (14–17).

CAH is caused by defects in the steroid synthesis pathway, primarily 21-hydroxylase deficiency. The phenotype is dependent on the amount of residual enzyme activity, but most patients with classic 21-hydroxylase deficiency present with the severe form characterized by salt-wasting attributable to secondary aldosterone deficiency and virilization of females attributable to secondary overproduction of testosterone. Salt-wasting and adrenal crises typically do not present until the second or third week of life, with nonspecific symptoms such as poor feeding, vomiting, and diarrhea, which are often erroneously considered of gastrointestinal origin, particularly in male patients whose genitalia are not apparently abnormal. However, because such crises are life threatening, correct diagnosis followed by rapid initiation of treatment is crucial. Electrolyte and hormone replacement are effective and life saving, and are the primary argument for universal newborn screening for CAH. However, 15 state newborn-screening programs, corresponding to approximately one-third of all births in the US, do not provide screening for this disorder because of the poor specificity of existing assays and because the follow-up costs of false-positive results are considered to outweigh the benefit of population screening (1).

The significant reduction in false-positive results we have achieved by use of LC-MS/MS is largely attributable to the fact that newborns not affected with CAH but under stress (e.g., because of prolonged birth or an
infection) will have increased cortisol in addition to secondary accumulation of 17-OHP and, consequently, a low peak-area ratio. A larger multicenter study evaluating the applicability of our approach to blood spots collected up to 5 days of age, as is customary outside of the US, will be reported separately.

We believe that this assay is well suited to become a second-tier screening test. Although confirmatory testing based on molecular genetic analysis of the CYP21 gene has been advocated, >50 mutations are known and a minimum of 10 different mutations must be screened to identify at least 90% of patients with CAH (18). The biochemical approach would not encounter such problems and potentially could even identify patients with CAH attributable to 11-β-hydroxylase deficiency.

In summary, we developed a new LC-MS/MS-based method for the analysis of 17-OHP and other steroids in newborn-screening blood spots. This assay is more accurate than the conventional immunoassays for the screening for CAH, but the analytical time required for this MS/MS method is currently not compatible with its use as a primary screening test of hundreds of samples per day. Nevertheless, it could significantly reduce the false-positive rate of the conventional immunoassays as a second-tier test when newborn blood spots that yield increased 17-OHP concentrations are reanalyzed by LC-MS/MS to determine the final screening result. Consequently, expensive follow-up investigations of abnormal results can be avoided, and the patient’s family can be spared the anxiety associated with a positive screening test.

References