concurrent with the attempt to adapt to and overcome the lowered oxygen tension. Of further interest is that no significant difference in circulating fetal DNA concentrations was discernable between ethnic Tibetans and recent migrant Han Chinese. This finding is rather unexpected because previous studies have supported the hypothesis that ethnic populations, such as Tibetans who have lived for almost 5 millennia at high altitude, have adapted to low oxygen concentrations and consequently have better pregnancy outcomes than do newly arrived migrant populations (16). We did not observe any influence of ethnicity concerning the release of fetal DNA, which suggests that the underlying placental alterations are similar in both groups. What does seem likely, however, is that residents who have lived for extended periods at high altitudes have developed optimal strategies for adapting their placental tissues to the underlying deficiencies to ensure an optimal pregnancy outcome (16). This may be reflected in the increased occurrence of intrauterine growth restriction in Han Chinese at high altitude, in contrast to native Tibetans, a trend we also observed in our study. i.e., babies born to Han Chinese women living at high altitude were smaller than those born to Han Chinese women living at sea level. We also observed some evidence of a further reduction in fetal weight for babies born to Han Chinese women with preeclampsia at high altitude, whereas no such difference was apparent in comparable Tibetan study groups. These findings will, however, need to be confirmed in larger studies.

In summary, analysis of circulating fetal DNA may not only be useful for the noninvasive prenatal assessment of fetal genetic traits; in the future, it may also be a unique tool for the study of anomalous placentation. In this context it will be interesting to determine whether circulating fetal RNA concentrations behave in a similar manner in pregnancies at high altitude.

References

Genotyping of Hepatitis C Virus by Melting Curve Analysis: Analytical Characteristics and Performance, Doris M. Haverstick, Grant C. Bullock, and David E. Bruns (Department of Pathology, University of Virginia, Charlottesville, VA; * address correspondence to this author at: Department of Pathology, University of Virginia Medical School, PO Box 800214, Charlottesville, VA 22908-0214; fax 434-924-8060, e-mail dmh2t@virginia.edu)

Knowledge of the hepatitis C virus (HCV) genotype is important in guiding antiviral therapy (1). Viral pharmacogenomic studies have demonstrated that patients infected with genotype-1 HCV respond poorly to interferon-ribavirin therapy and may require a longer course of therapy (1–3). In the United States, where the most common HCV types are 1a/b, 2a/c, 2b, and 3a, it is particularly important to distinguish patients infected with type 1a/b from those infected with types 2 and 3. To meet the need for this information, we have developed a rapid-cycle, real-time PCR assay with melting-curve analysis for genotyping of HCV (4). This method uses reverse transcription-PCR performed in a block cycler followed by a seminested PCR with product identification using fluorescence resonance energy transfer (FRET) probes and DNA melting curves in a single tube. The FRET probes were designed to identify HCV types 1, 2a/c, 2b, 3a, and 3b/4. Other less common genotypes will likely either not be amplified (types 6b, 7b, and 11a) or will produce a product with a non-type 1 melting temperature (T_m) (4).

Real-time PCR has gained widespread use in clinical analyses since its introduction in 1991 (5), but little has been published on the performance characteristics of such assays over periods longer than a few days or weeks. The objective of the present study was to determine the analytical characteristics of the above HCV genotyping assay and its performance in routine use. The study period covered 23 months with 92 runs performed by six operators on four different LightCycler® instruments, using the exact assay described above (4).

Patient samples were analyzed in groups of 5 to 13. Each analytical run also contained three quality-control
QC samples: serum negative for HCV, pooled serum previously analyzed and found to be type 1 HCV, and one of the following serum pools: type 2a/c, type 2b, or type 3a HCV. The \(T_m \)s of QC samples met our established criteria for acceptability in all 92 runs. Of the 184 QC samples, there was 1 amplification failure. For the QC samples that amplified, the \(T_m \)s segregated into discrete, nonoverlapping, type-specific intervals (Fig. 1A and Table 1). The within-type \(T_m \) range was \(\pm 2^\circ \mathrm{C} \) for all types (type 1, \(1.7^\circ \mathrm{C} \); type 2a/c, \(1.8^\circ \mathrm{C} \); type 2b, \(1.6^\circ \mathrm{C} \); type 3a, \(1.4^\circ \mathrm{C} \)), giving a \(CV >1.0\% \) for each type (type 1, 0.53%; type 2a/c, 0.66%; type 2b, 0.62%; type 3a, 0.66%).

Patient results segregated into discrete, nonoverlapping intervals that were indistinguishable from those for the QC samples (Fig. 1B and Table 1). In addition, specimens from patients infected with HCV genotype 3b/4 produced a discrete, nonoverlapping \(T_m \) interval. Genotype 3b/4 QC material was not analyzed routinely because little serum was available to make a pool. As with the QC pools, the range of patient \(T_m \)s was \(\pm 2^\circ \mathrm{C} \) within an individual genotype (type 1, \(2.0^\circ \mathrm{C} \); type 2a/c, \(1.4^\circ \mathrm{C} \); type 2b, \(1.0^\circ \mathrm{C} \); type 3a, \(0.9^\circ \mathrm{C} \); type 3b/4, \(0.8^\circ \mathrm{C} \)); for all types, the CV of \(T_m \) was \(<1.0\% \) (range, 0.49–0.75%).

Among the 532 individual patient samples analyzed, genotyping was successful in 517 (\(>97\% \)). There were 15 failures. One sample produced a \(T_m \) of 45.3 \(^\circ \mathrm{C} \), which was below that of any other specimen analyzed; there was insufficient sample to repeat the melting curve analysis or obtain sequence information. Fourteen samples were reported as “none detected”. Five of these samples had viral loads \(<10\,000 \, \text{IU/mL} \), which is below the lower limit for the assay (4). The most recent of these samples was successfully genotyped after fivefold centrifugal concentration (27 000 g for 60 min) of the specimen. The remaining nine specimens had little or no clinical information available to confirm HCV infection of sufficiently high viral load for genotyping. Neither anti-HCV antibody status nor HCV quantification results were available for these specimens.

Six samples had co-infections (types 1 and 2a/c in two patients, types 1 and 2b in two patients, types 2a/c and 3b/4 in one patient, and types 2a/c and 2b in one patient); an example is shown in Fig. 1C. For the remaining 514 patient samples, the distribution of types was consistent with expected frequencies in the United States: 397 type 1, 26 type 2a/c, 39 type 2b, 47 type 3a, and 5 type 3b/4.

Because genotypes 3b and 4 are indistinguishable by our FRET sensor probe [see Table 1 of the online Data Supplemental from Bullock et al. (4)], samples that were genotyped as 3b/4 were sent for confirmatory genotyping by sequencing. Two of the six 3b/4 samples were confirmed as type 4 by sequencing. Two others were sequenced and found to be “aberrant” types; that is, sequence data did not allow precise assignment of a genotype. The remaining two of the six samples did not contain enough material for confirmation and were reported as type 3b/4. We have had no confirmed cases of HCV genotype 3b at our institution; we therefore have been unable to validate the performance of our assay by use of a type 3b specimen or to compare type 4 with type 3b samples. We continue to verify the rare cases of type 3b/4.

During the earlier study (4), the current procedure was compared with the INNO-LiPa “line-probe” assay...
possible to calculate 95% confidence intervals for
In each case, the sequence data confirmed the genotype
genotyped by DupliType sequencing (Quest Diagnostics).

FRET probes is an accurate, precise, and robust approach
PCR with melting curve analysis using a single set of
results published previously

and data analysis occurring in the morning of day 2 (25
times of
fall outside of the

genotyping as 3b/4 and 1 because of a
to HCV genotyping for the majority of samples received

20 °C. The type-specific 95% confidence

and to gather comparison data with a different method,
the first 10 patient samples in the current study that were
defined for
was 1.3–1.7 g/L, with a half-life of 3–5 days

in serum or plasma in healthy individuals is estimated to

AAT is the main circulating and tissue serine protease

rate new ELISA-based test for identifying carriers of the

panniculitis. Here we briefly describe a simple and accu-

suspected in patients with Wegener granulomatosis and

that may lead to complete liver failure. The Z allele is also

Scandinavia, the frequency of the Z allele is considerably

frequency of the Z allele in the US population of European

is Z, which has been identified in most populations but

gene. The most common severe deficiency variant of AAT

ELISA for Specific Detection of PiZ-Related α1-Anti-

typrsin Deficiency, Sten Gershagen1 and Sabina jan-
ciauskienė2 (1 Wieslab AB, Ideon, Science Park, Lund,

References

1. Krekulova L, Rehak V, Wakeil AE, Harris E, Riley LW. Nested restriction
site-specific PCR to detect and type hepatitis C virus (HCV): a rapid method to
distinguish HCV subtype 1b from other genotypes. J Clin Microbiol 2001;39:
1774–80.
Randomised trial of interferon α2b plus ribavirin for 48 weeks or for 24 weeks
versus interferon α2b plus placebo for 48 weeks for treatment of chronic
infection with hepatitis C virus. International Hepatitis Intervenional Therapy
Genotyping of hepatitis C virus isolates using CLIP sequencing. J Clin Microbiol
4. Bullock GC, Bruns DE, Haverstick DM, Hepatitis C genotype determination by
melting curve analysis with a single set of fluorescence resonance energy
5. Wittwer CT, Garling DJ. Rapid cycle DNA amplification. Biotechniques 1991;
10:76–83.

DOI: 10.1373/clinchem.2004.041673

ELISA for Specific Detection of PiZ-Related α1-Anti-

typrsin Deficiency, Sten Gershagen1 and Sabina jan-
ciauskienė2 (1 Wieslab AB, Ideon, Science Park, Lund,

Sweden; 2 Department of Medicine, University Hospital

Malmö, Malmö, Sweden; * address correspondence to this
author at: Wieslab AB, Ideon, Science Park, Sölvegatan 41,

22370 Lund, Sweden; fax 46-46-14-08-90, e-mail sg@

wieslab.se)

α1-Antitrypsin (AAT) deficiency is a hereditary autosomal

disorder resulting from a variety of mutations in the AAT
gene. The most common severe deficiency variant of AAT
is Z, which has been identified in most populations but
occurs most frequently in northwest Europe. The fre-

quency of the Z allele in the US population of European
descent is between 0.01 and 0.02, with the homozygous
deficiency affecting 1 in every 2000 to 7000 individuals. In

Scandinavia, the frequency of the Z allele is considerably
higher: at birth, 1 of every 1600 babies is homozygous for

the Z allele. Individuals homozygous for the AAT Z allele
have a high risk for developing early-onset pulmonary
emphysema and/or abnormal liver function in infancy

that may lead to complete liver failure. The Z allele is also

suspected in patients with Wegener granulomatosis and

panniculitis. Here we briefly describe a simple and accu-
rate new ELISA-based test for identifying carriers of the

AAT Z allele.

AAT is the main circulating and tissue serine protease
inhibitor in humans (1). The mean concentration of AAT
in serum or plasma in healthy individuals is estimated to
be 1.3–1.7 g/L, with a half-life of 3–5 days (2, 3). Circu-

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Sample type (n)</th>
<th>Mean (minimum–maximum)</th>
<th>SD</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QC (92)</td>
<td>64.2 (63.2–64.9)</td>
<td>0.34</td>
<td>64.1–64.3</td>
</tr>
<tr>
<td></td>
<td>Patients (399)</td>
<td>64.2 (63.0–65.0)</td>
<td>0.31</td>
<td>64.2–64.2</td>
</tr>
<tr>
<td>2a/c</td>
<td>QC (31)</td>
<td>59.5 (58.8–60.1)</td>
<td>0.39</td>
<td>59.3–59.6</td>
</tr>
<tr>
<td></td>
<td>Patients (30)</td>
<td>59.5 (58.6–60.1)</td>
<td>0.34</td>
<td>59.4–59.7</td>
</tr>
<tr>
<td>2b</td>
<td>QC (30)</td>
<td>52.4 (51.4–53.0)</td>
<td>0.33</td>
<td>52.3–52.6</td>
</tr>
<tr>
<td></td>
<td>Patients (42)</td>
<td>52.5 (52.1–53.1)</td>
<td>0.25</td>
<td>52.4–52.6</td>
</tr>
<tr>
<td>3a</td>
<td>QC (30)</td>
<td>50.3 (49.5–50.9)</td>
<td>0.33</td>
<td>50.1–50.4</td>
</tr>
<tr>
<td></td>
<td>Patients (47)</td>
<td>50.4 (49.2–51.1)</td>
<td>0.38</td>
<td>50.3–50.5</td>
</tr>
<tr>
<td>3b/4</td>
<td>Patients (6)</td>
<td>54.6 (53.9–55.1)</td>
<td>0.41</td>
<td>Insufficient data</td>
</tr>
</tbody>
</table>

* Method of analysis as in Bullock et al. (4).