SARS. Further studies will be needed to demonstrate conclusively that SARS-CoV is indeed causative of neurologic manifestations such as those described here and to address the potential neuropathologic sequelae of SARS-CoV infection of the central nervous system.

References


Emily C.W. Hung1
Stephen S.C. Chim2
Paul K.S. Chan3
Yu K. Tong2
Enders K.O. Ng2
Rossa W.K. Chiu2
Chi-Bon Leung2
Joseph J.Y. Sung3
John S. Tam2
Y.M. Dennis Lo3

Departments of 1 Paediatrics,
2 Chemical Pathology,
3 Microbiology,
and
4 Medicine and Therapeutics
The Chinese University of Hong Kong
Prince of Wales Hospital
Shatin, New Territories
Hong Kong Special Administrative Region

*Author for correspondence. Fax 215-662-7529; e-mail kricka@mail.med.upenn.edu.

DOI: 10.1373/clinchem.2003.026906

Protein Microarrays: A Literature Survey

To the Editor:
We have previously published literature surveys on microchips, microarrays, and nanotechnology that were compiled by the IFCC Working Group on Nanotechnology (1–3). The Working Group has now completed a survey on the protein microarray literature. The current survey covers the protein, peptide, and antibody microarray literature up to the middle of 2003.

A protein microarray is a collection of proteins arranged on a planar solid surface (membrane, glass slide, or silicon chip) or immobilized on individual microbeads trapped in the ends of the fibers in a fiber optic bundle, or a collection of coded microbeads in solution (known as a liquid or 3D array). The scope of arrayed protein includes peptides, antigens, antibodies, and allergens. In common with the cDNA and oligonucleotide microarrays, a protein microarray facilitates simultaneous multianalyte assays. These analytical devices are now an important tool in studies to characterize the human and other proteomes and for characterizing protein interactions (e.g., protein–protein and protein–DNA). The literature survey has been divided into four sections: (1) General (books, reviews, editorials); (2) Fabrication (array construction and detection methodologies); (3) Applications (protein identification and quantification, array-based proteomics, protein interactions); and (4) Patents (only US patents listed currently). The database can be accessed at Clinical Chemistry Online at http://www.clinchem.org/content/vol49/issue12/. Other useful resources for general information on protein microarrays and chips are the DNA Microarray (Genome Chip; at www.gene-chips.com) and BioChipNet (www.biochipnet.de) web sites.

References


Larry J. Kricka*
Thomas Joos2
Paolo Fortina3

1 Department of Pathology and Laboratory Medicine
7.103 Founders Pavilion
University of Pennsylvania Medical Center
3400 Spruce St.
Philadelphia, PA 19104

2 NMI Natural and Medical Sciences Institute
at the University of Tuebingen
Markuswiesenstrasse 55
72770 Reutlingen, Germany

3 Center for Translational Medicine
Thomas Jefferson University
406 Medical Office Bldg.
1100 Walnut St.
Philadelphia, PA 19107

Improved Real-Time PCR Assay for Homogeneous Multiplex Genotyping of Four CYP2C9 Alleles with Hybridization Probes

To the Editor:
The human cytochrome P450 2C (CYP2C) subfamily consists of four members (CYP2C8, -9, -18, and -19), which share >82% amino acid identity (1). The enzyme CYP2C9 metabolizes ~10% of therapeutically important drugs (e.g., phenytoin and warfarin). The gene CYP2C9 is very polymorphic, with >10 alleles result-