blood groups. Two factors contribute to the probability of discrepancy and thus to the power of this method: the power will be higher if the number of blood groups is higher or if the frequencies are more similar.

References

Janne Suvisaari1,2* Martti Syrjälä2
1 Department of Clinical Chemistry University of Helsinki FIN-00029 HUS Helsinki, Finland
2 HUCH Laboratory Diagnostics Helsinki University Central Hospital FIN-00029 HUS Helsinki, Finland

* Address correspondence to this author at: HUCH Laboratory Diagnostics, Helsinki University Central Hospital, PO Box 340, FIN-00029 HUS, Finland. Fax 338-9-471-75656; e-mail janne.suvisaari@helsinki.fi.

Guidelines and Recommendations in Laboratory Medicine

To the Editor:

Dr. Keffer (1) attempted to show through a Medline search and other means that there are few, if any, published evaluations of the NACB guidelines. We suggest that the impact of guidelines can be better measured by citations in laboratory procedure manuals (in hospitals and commercial laboratories), manufacturers’ literature and product labeling, and internal documents used by industry to set performance requirements for their products. These occurrences are difficult to monitor, but we believe they are more representative than the measures of the value of NACB LMPGs.

Clinical and laboratory guidelines are reached by consensus-building and may not alter practice in most settings because they are already based, at least in part, on what most practitioners feel should be the standard of practice. That standard is largely established based on the collective current practical experiences of those practitioners. This concept has recently been addressed in the area of clinical practice in an editorial by van Walraven (8). Guidelines of this nature thus are likely to change practices more drastically at the fringes than they are to move the central tendencies of practitioners. Indeed, it is our opinion that they may not be accepted as guidelines in the mainstream of clinical practice unless they represent the practices already in use by the mainstream and that the mainstream often has little to change to be in compliance with these guidelines.

The alternative view is that just because everyone is adhering to a particular practice does not make it optimal. Eventually, widely used but antiquated tests and methods must be replaced with new ones. Eventually, recommendations must be a balance between consensus and evidence-based approach. However recommendations are derived, codification can document and firmly establish a standard from which to build.

Dissemination of guideline information requires improvement. The
NACB recently conducted an informal e-mail survey of 2596 foreign and domestic doctoral members of AACC and NACB concerning familiarity with and use of the NACB guidelines. Overall, only 148 replies were received. This low response rate alerted the NACB leadership to a potential need for wider dissemination of these guidelines, and efforts are underway to use the Internet and other means to facilitate this.

In the NACB survey, although the numbers were small, there was an indication that when the guidelines were used, they were used in ways that met the original objectives of NACB. Among 57 clinical laboratorians who reported that they had used the guidelines, 60% indicated that they specifically selected tests, agent sets, or products that followed the guidelines; 21% indicated they told their vendor representatives what their companies had to do to be in compliance; and 14% indicated that they had modified a vendor’s procedure to be in compliance with the guidelines. Among 16 industry laboratorians who responded to industry-focused questions, 6 indicated that their companies used the guidelines in product design (such as sensitivity, specificity, and choice of analytes), and 8 indicated that their companies use the guidelines in customer education.

One of the reasons for these somewhat less than ideal survey results is that the first four NACB guidelines were presented during satellite meetings of the AACC annual meetings, whereas more recently, the guidelines have been presented at EduTrak sessions at the AACC meeting in addition to meetings of cosponsoring medical societies. Moreover, the first four guidelines were published in monograph form only, whereas the latter guidelines have also been published in peer-reviewed journals (2, 5, 6). With the exception of the thyroid guidelines, of which >50 000 copies were distributed, <5000 copies of the monographs were usually printed. More recently, beginning with the guideline for cardiac markers (2), the NACB has posted preliminary versions of the guidelines on the NACB web page and invited e-mail commentaries. This combined approach has led to more widespread recognition of their existence and broader participation in formulating the recommendations made therein.

We applaud Dr. Keffer’s efforts in bringing this important issue to the forefront. The process of creating new guidelines warrants discussion to improve the products and assess their impact.

References


Alan H.B. Wu1,2
Roland Valdes, Jr.2
Charles D. Hawker3

1 Department of Pathology and Laboratory Medicine
Hartford Hospital
Hartford, CT 06102
2 Department of Pathology and Laboratory Medicine
University of Louisville
School of Medicine
Louisville, KY 40292
3 ARUP Laboratories, Inc.
500 Chipeta Way
Salt Lake City, UT 84108

* Address correspondences to this author at: Department of Pathology, Hartford Hospital, 80 Seymour St., Hartford, CT 06102. Fax 860-545-3733; e-mail awu@hathosp.org.

α2-Microglobulin Is Stable in Human Urine ex Vivo

To the Editor:

Increased concentrations of urinary α2-microglobulin may imply proximal tubular damage (1). α2-Microglobulin has generally been considered to be stable in human urine (1, 2). Tencer et al. (2) observed good stability in 10 urine samples stored at room temperature for 7 days, at 4 °C for 30 days, and at −20 °C for 6 months. In contrast, Donaldson et al. (3) noted significant losses of α2-microglobulin in urine stored at −20 °C and that this problem was exacerbated in more acidic (pH <6.0) urines; they recommend that urine should be neutralized on receipt. The manufacturers of our assay recommend that urines be assayed fresh or stored at 4 °C for a period of less than 1 week and warn against freezing samples. Urine samples are often stored before batch analysis. To clarify the appropriate storage conditions for urinary α2-microglobulin, we studied stability under standardized conditions.

Random unpreserved urine samples were collected from 19 patients at a single nephrology clinic, and urinary pH was determined (mean pH 5.87; range, 5.08–6.85). Samples were then divided into two aliquots, one of which was neutralized (mean pH 7.58; range, 7.23–7.94) by dropwise addition of 5 mol/L NaOH. Within 6 h of collection, α2-microglobulin and creatinine were measured in both aliquots. Ten (~1 mL each) aliquots of both the untreated and neutralized urines were stored in capped polystyrene tubes at room temperature, 4 °C, −20 °C, or −80 °C.

Urine ex Vivo