were found for both sense and antisense single strand. It is likely that more than one stable conformation was formed for each single strand. In the case of the mutation, additional peaks were detected (Fig. 1).

To perform an automatic evaluation of the mutation, an important point is the reproducibility of the complex peak pattern. The analysis of different electrophoretic runs over 15 days confirmed the constant appearance of the peak pattern. Characteristic peaks for the wild-type and mutant alleles were defined by their retention time and height. For the sense strand (FAM), the peaks were defined by the following data points: wild-type 1, 5756; wild-type 2, 5809; mutant 1, 5736; mutant 2, 5788, and for the antisense strand (HEX): wild-type, 5867; mutant, 5738. In the antisense strand, one wild-type and one mutant peak were not considered for automatic evaluation because the two peaks partially overlapped. The variation of the peak retention time was less than ±8 data points for the sense strand and less than ±20 data points for the antisense strand.

The retention time of the peaks and their variations were listed in the GenotyperTM analysis software (Version 2.0; PE Applied Biosystems), and a macro was created for the analysis of the data (clear table; clear labels; select blue lanes; set cell row 1 column 1 to sample name; show the plot window). In the diagram, the peaks were named wild-type or mutant, and in the resulting table the summary of analysis was presented (Fig. 1). In the table, the peaks were named wild-type for the sense and antisense single strands in the case of the homozygous presence of the wild-type allele. In the case of homozygosity of the mutation, only peaks defined as mutant were recognized; in the heterozygous state, a combination of both was present. In routine usage, the practicability and reliability of the evaluation program has been demonstrated.

The ABI 310 Genetic Analyzer has been widely distributed in clinical laboratories in the last 2 years. The main applications of this system are sequencing and fragment analysis. In our report, we showed that SSCP analysis could also be performed with high reliability by capillary electrophoresis. For the first time, the combination of SSCP analysis and automatic evaluation of the mutation has been shown, even in cases where a complex SSCP peak pattern was present. In the diagnostic DNA testing, this approach is advantageous in the analysis of small sample numbers (as little as one sample).

References
Table 1. Patient characteristics, plasma indices, and kinetic variables.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age, years</th>
<th>Weight, kg</th>
<th>tHcy, μmol/L</th>
<th>Creatinine, μmol/L</th>
<th>s-cob, pmol/L</th>
<th>s-folate, nmol/L</th>
<th>T1/2, h</th>
<th>Cl, mL/min</th>
<th>Vv, L/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>45</td>
<td>67</td>
<td>6.5</td>
<td>11.8</td>
<td>85</td>
<td>94</td>
<td>871</td>
<td>443</td>
<td>27.6</td>
</tr>
<tr>
<td>BB</td>
<td>23</td>
<td>95</td>
<td>7.8</td>
<td>5.3</td>
<td>104</td>
<td>87</td>
<td>590</td>
<td>607</td>
<td>>45.3</td>
</tr>
<tr>
<td>CC</td>
<td>22</td>
<td>70</td>
<td>7.6</td>
<td>3.5</td>
<td>113</td>
<td>104</td>
<td>401</td>
<td>535</td>
<td>9.5</td>
</tr>
<tr>
<td>DD</td>
<td>51</td>
<td>97</td>
<td>7.7</td>
<td>9.4</td>
<td>109</td>
<td>95</td>
<td>564</td>
<td>549</td>
<td>17.7</td>
</tr>
<tr>
<td>EE</td>
<td>29</td>
<td>70</td>
<td>7.8</td>
<td>7.4</td>
<td>92</td>
<td>84</td>
<td>242</td>
<td>255</td>
<td>16.1</td>
</tr>
<tr>
<td>FF</td>
<td>70</td>
<td>58</td>
<td>13.9</td>
<td>20.8</td>
<td>83</td>
<td>96</td>
<td>180</td>
<td>464</td>
<td>8.9</td>
</tr>
<tr>
<td>Mean</td>
<td>40</td>
<td>76</td>
<td>8.6</td>
<td>9.7</td>
<td>98</td>
<td>93</td>
<td>475</td>
<td>476</td>
<td>2.6</td>
</tr>
<tr>
<td>SD</td>
<td>19</td>
<td>16</td>
<td>2.7</td>
<td>6.2</td>
<td>13</td>
<td>7</td>
<td>255</td>
<td>123</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*a The blood samples were collected immediately before tracer injection in both study situations.

*b s-cob, serum cobalamin; s-folate, serum folate; –, without methotrexate; +, with methotrexate; Cl, clearance; and Vv, distribution volume.

Regional Ethics committee in health region III, and all patients gave their written informed consent at inclusion. The patients received one of two cytostatic regimens, both including high-dose (HD)-MTX. Patients AA, DD, EE, and FF (non-Hodgkin lymphoma patients) had eight courses of CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) and six courses of HD-MTX given ~10 days after the CHOP regimen. Patients BB and CC (medulloblastoma patients) had peroral procarbazin (days 1–14), vincristine (days 1, 8, 15, 22, 29, and 36), and HD-MTX courses (days 15, 22, and 29). When included in the present study, the patients had received none or one course of HD-MTX.

The kinetics of [14C]Hcy were investigated on two occasions in each patient, i.e., both without and during HD-MTX treatment (a 2-h infusion of MTX started 12 h before tracer injection). [1-14C]Hcy was prepared immediately before use from [1-14C]Hcy thiolactone (56 mCi/mmol, Amershams International) as described (12); a bolus of 200 μCi of [14C]Hcy (3.6 μmol) in 20 mL of 250 mmol/L NaCl, pH 5, was injected within 1 min. Blood samples were collected for 24 h, and tHcy was determined (13).

Plasma samples were reduced, derivatized, and quantified according to a slight modification of an automated assay for tHcy (13). Plasma samples (360 μL) were mixed with 4 mol/L sodium borohydride (200 μL in 0.1 mol/L NaOH), and then 5 mol/L HCl (40 μL) was added. After 10 min, protein was precipitated by adding 200 μL of 2 mol/L sulfosalicylic acid. The acid supernatant (240 μL) was mixed with of 6.7 mmol/L dithioerythritol (60 μL), 1 mol/L NaOH (150 μL), 4 mol/L sodium borohydride (150 μL), 5 mmol/L EDTA (60 μL), water (2100 μL), and 25 mmol/L monobromobimane (60 μL). The derivatization was stopped after 3 min by adding 210 μL of glacial acetic acid. The Hcy-bimane adduct was separated and quantitated using reversed-phase chromatography as previously described (13). For each plasma sample, six consecutive injections (each 400 μL) were made, and the eluate containing the labeled Hcy adduct was collected and pooled. The pooled eluate was evaporated to dryness and dissolved in water and scintillation fluid; the radioactivity was determined by scintillation counting (Packard Tri-Carb 300, United Technologies).

Serum cobalamin and serum folate were determined as reported elsewhere (12).

The elimination of tHcy after intravenous injection obeys first order kinetics and is consistent with a two-compartment model (14). However, for simplicity and comparison with our previous studies (11, 12, 15), the elimination rate constant (k_e) and half-life (T1/2) were calculated by linear regression of the terminal, linear part (2–6 h) of the log-transformed concentration vs time curve (15). The kinetic variables were calculated using KaleidaGraph™, Ver. 2.1.3 for Macintosh (Synergy Software). The time course for tHcy was also analyzed by the program PCNONLIN, Ver. 4.0 (Statistical Consultants Inc.) based on the Akaike's information criterion (16) for the best curve fit. The T1/2 obtained by these two methods differed by <20% in most patients. The formulas used (17) for the calculations are given elsewhere (12).

The results are given as mean and SD. Comparison of paired data was performed using the Wilcoxon signed-rank test, and unpaired values were compared using the Mann–Whitney U-test.

The elimination kinetics of plasma tHcy were investigated in six cancer patients on two occasions, before and during HD-MTX treatment. Patient characteristics and blood indicators obtained immediately before each investigation are listed in Table 1. All patients had serum folate and cobalamin above the reference ranges and serum creatinine concentrations within reference values. tHcy concentrations were 8.6 ± 2.7 μmol/L and 9.7 ± 6.2 μmol/L before the first (−MTX) and second studies (+MTX), respectively (Table 1).

Within the first 15 min after the injection of the [14C]Hcy tracer, there was essentially no change in tHcy (<1 μmol/L). Thus, this test condition does not influence the tHcy concentration and therefore allows the assessment of plasma tHcy elimination kinetics at low, fasting concentrations. In contrast, the standard dose of unlabeled Hcy used for the Hcy loading test causes a 60–100 μmol/L increase in plasma tHcy (11, 12, 15, 18).
Plasma tHcy remained essentially stable for 24 h in the absence of MTX. Only a minor increase of 12.7% ± 9.3%
(1.1 ± 0.8 μmol/L) was observed 8 h after the injection, a diurnal change that is in the same range as previously
reported in healthy individuals (18). In contrast, there was a variable but substantial increase in tHcy in patients after
MTX infusion, reaching a maximum of 49.3% in plasma (19). The inset shows the corresponding log-linear regression lines in the time interval 2–6 h.

In the absence of MTX, the plasma T₁/2 was 2.6 ± 0.5 h
(kₑ = 0.27 ± 0.03), corresponding to a clearance of 78 ± 10
ml/min. Plasma tHcy kinetics showed no consistent
changes in response to HD-MTX. The mean differences in
T₁/2 and clearance between the two occasions were 13.3%
± 17.5% and −4.1% ± 10.4%, respectively (P > 0.05; Fig. 1 and Table 1).

From these data, the following conclusions can be made: (a) the plasma tHcy kinetics are not affected by
HD-MTX and thereby folate status, as previously demonstrated
by Hcy loading in folate-deficient subjects (11); and (b) the kinetics are similar albeit slightly more rapid
than observed during Hcy loading (T₁/2 = 2.6 vs 3.7 h; P = 0.008) (12). These results verify that peroral Hcy loading is
an adequate procedure for the assessment of Hcy turn-
over in plasma.

This work was supported by grants from the Norwegian
Council on Cardiovascular Disease. We greatly appreciate
the technical assistance of Elfrid Blomdal, Gry Kvalheim,
Else Leirnes, and Wenche Breyholz.

References
1:228–37.
2. Allen RH, Stabler SP, Savage DG, Lindenbaum J. Diagnosis of cobalamin
deficiency. 1. Usefulness of serum methylmalonic acid and total homocys-
3. Guttmersen AB, Ueland PM, Nesthus I, Nygård O, Schneede J, Vollset SE.
Refsum H. Determinants and vitamin responsiveness of intermediate hyper-
homocysteinemia (≥40 μmol/liter). The Hordaland Homocysteine Study.
4. Brattström LE, Hultberg BG, Hardebo JE. Folic acid responsive postmeno-
5. Huennekens FM. The methotrexate story: a paradigm for development of
6. Ueland PM, Refsum H, Male R, Lillehaug JR. Disposition of endogenous
homocysteine by mouse fibroblast C3H/10T1/2 and 8 and the chemically
transformed C3H/10T1/2/2MCA Cl16 cells following methotrexate exposure.
7. Refsum H, Christensen B, Djurhuus R, Ueland PM. Interaction between
methotrexate, “rescue” agents and cell proliferation as modulators of
homocysteine export from cells in culture. J Pharmacol Exp Ther 1991;258:
559–66.
8. Fiskerstrand T, Ueland PM, Refsum H. Folate depletion induced by metho-
trexate affects methionine synthase activity and its susceptibility to inacti-
9. Refsum H, Heiland S, Ueland PM. Fasting plasma homocysteine as a
sensitive parameter to antifolate effect. A study on psoriasis patients
10. Refsum H, Ueland PM, Kvinsland S. Acute and long-term effects of high-
dose methotrexate treatment on homocysteine in plasma and urine.
11. Guttmersen AB, Schneede J, Ueland PM, Refsum H. Kinetics of total plasma
homocysteine in subjects with hyperhomocysteinemia due to folate or
12. Guttmersen AB, Mansoor MA, Fiskerstrand T, Ueland PM, Refsum H.
Kinetics of plasma homocysteine in healthy subjects after peroral homocys-
13. Fiskerstrand T, Refsum H, Kvalheim G, Ueland PM. Homocysteine and other
thiols in plasma and urine: automated determination and sample stability.
14. Rowland M, Tozer TN. Clinical pharmacokinetics. Concepts and applica-
15. Guttmersen AB, Ueland PM, Svarstad E, Refsum H. Kinetic basis of
hyperhomocysteinemia in patients with chronic renal failure. Kidney Int
16. Yamaoka K, Nakagawa T, Uno T. Application of Akaike’s information
criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Phar-
17. Welling PG. Pharmacokinetics. Processes and mathematics. Washington,
18. Guttmersen AB, Schneede J, Fiskerstrand T, Ueland PM, Refsum H. Plasma
concentrations of homocysteine and other aminothiol compounds are
acute lymphoblastic leukemia. Changes during a chemotherapeutic regimen
20. Broxson EH Jr, Stork LC, Allen RH, Stabler SP, Kolhouse JF. Changes in
plasma methionine and total homocysteine levels in patients receiving

Improved Method to Retrieve DNA from Dried Silver-stained Polyacrylamide Gels, Steven P. Siembieda
and David J. Lakatua (Regions Hospital, St. Paul, MN
55101; * address correspondence to this author at:
Regions Hospital, Department of Pathology, 640 Jackson
St., St. Paul, MN 55101; fax (612) 221-2741, e-mail
David.J.Lakatua@Healthpartners.com)

Differential display analysis (DDA) has become a useful
and popular technique to identify differentially expressed