Multivariate Receiver-Operating Characteristic Curve Analysis: Prostate Cancer Screening as an Example

Edward K. Shultz

The evolution of test performance analysis should include the long-term costs and benefits associated with testing. Evolutionary laboratory techniques to achieve this include introduction of a new methodological technique, a multivariate extension to a current analytical technique, receiver-operating characteristic (ROC) curve analysis (MultiROC analysis). This extension to ROC methodology allows the comparison of composite test rules in a format similar to that of ROC curves. Statistical properties, guidelines for use, and a detailed example are described. MultiROC is used in the outcomes analysis of the value of screening for prostate cancer. The effect of age and different test decision thresholds are examined in an extension of a previously published outcomes analysis. The results indicate that the variations in test performances caused by these components are important in assigning a final cost:benefit ratio of screening for prostate cancer.

Indexing Terms: decision trees/decision support techniques/outcome assessment/prostatic diseases/mass screening/MultiROC

Society has increasingly emphasized the critical evaluation of long-term costs and outcomes in medical care. Consistent with this is an evolution of laboratory analysis of test performance to include these concepts. Outcomes analysis of current laboratory testing procedures could significantly change current practices. Consider reference ranges that are typically derived from the middle 95% of a nondiseased population. In practice, clinicians use the values as action thresholds in deciding whether the patient is diseased or not. Do the action thresholds reflect the cost of a missed diagnosis or the cost of a falsely positive diagnosis and subsequent workup? After subtraction of these costs from the benefits received by patients diagnosed correctly, what is the net value derived from the decision threshold? Would another decision threshold give more value? These questions are not easily answered, requiring analyses rarely done in the laboratory. Yet in an era of constrained resources, it is crucial to focus on these questions and other laboratory practices to determine the ultimate benefits received.

New challenges require new tools. This paper will try to provide an approach to answering the above questions first by introducing a new methodological technique and second by providing an example examining the long-term costs and outcomes of different decision levels. The first section will present a multivariate extension to a current analytical technique, receiver-operating characteristic (ROC) curve analysis, with appendicitis and prostatic disease as examples. The second will perform an outcomes analysis examining the impact of different decision levels on the cost:benefit ratio in screening for prostate cancer.

Multivariate ROC Curve Analysis (MultiROC)

ROC analysis has gained popularity in laboratory medicine over the last 30 years as a powerful tool for evaluating test performance. Originally a method for evaluating falsely positive and truly positive interpretations of signals on radar screens, the technique was adopted by radiologists (1, 2) and subsequently laboratory scientists as a means to evaluate the sensitivity and specificity of medical tests over a variety of decision thresholds. In contrast to reference ranges, which are test result intervals statistically derived to reflect only the range of values found in a specific normal population, ROC curves simultaneously show the proportion of both diseased and nondiseased subjects correctly diagnosed at various test cutoff points. This graphical display not only facilitates the selection of an optimal threshold but also enables easy comparison of different tests. Multiple papers have increased the utility of the ROC curve by developing statistical measures to compare ROC curves and single points on these curves. These techniques have been summarized with emphasis on the techniques of interest to the laboratory scientist (3, 4). Although mathematics has added power and statistical exactitude to the interpretation of ROC curves, the simple, easily interpretable graphical display of the tradeoff between sensitivity and specificity at each decision threshold remains the major strength of these curves.

While ROC curves offer significant gains in test performance evaluation, they address a subset of all medical testing decisions. They are limited to the display of the performance of a single test, or the comparison of single tests, for the detection of a disease state. In medicine, it is recognized that a group of results often offers more sensitivity or specificity than any of the individual tests, depending upon the particular way the test results are combined and interpreted.

2 Nonstandard abbreviations: ROC, receiver-operating characteristic; MultiROC, multivariate receiver-operating characteristic; WBC, white blood cell; PSA, prostate-specific antigen; PAP, prostatic acid phosphatase; TRUS, transrectal ultrasonography; and DRE, digital rectal examination.
Although powerful statistical techniques such as linear discriminate analysis and logistic regression offer the ability to combine test results, they have had only limited popularity at individual hospitals, in part because of the statistical expertise necessary to use them, and in part because they have not provided the intuitive, easily interpreted graphs available in ROC analysis.

Laboratory scientists have developed many rules for the interpretation of clusters of tests, but the precision achieved by the laboratory professional in interpretation of individual tests is lost when multiple test results are combined to form a diagnostic impression. One is rarely able to give the sensitivity and specificity of an interpretation involving multiple tests, and typically these rules either are created in collaboration with a statistician or have evolved over years of experience. It would clearly be desirable for the clinician and laboratory scientist to be able to analyze the performance of their own decision rules on data from their own institutions and perhaps to refine rules based on the results of their analyses.

This report introduces a new extension to ROC curves that is designed to address these needs. In the model proposed, a simple graphical method of combining tests into rules is presented, allowing comparison of different rules over varying test thresholds, as is found in traditional ROC analysis. As will be demonstrated, use of this method, MultiROC, allows quick refinement of decision rules to derive rules with superior diagnostic performance. An example and guidelines for interpretation of MultiROCs will be presented.

MultiROC Methods

Review of ROC analysis. In traditional ROC analysis, each patient is categorized by some “gold standard” he have or lack a specific attribute, typically the diagnosis of a disease. A test (usually less expensive than he gold standard in financial or health cost) is then examined for its diagnostic performance by using a plot of the sensitivity (true-positive rate) on the y-axis vs false-positive rate (1 - specificity) on the x-axis. The curve is generated by choosing all possible test decision cutoffs and graphing the result.

This results in a curved line from x,y coordinates 0,0 o 1,1 (Fig. 1). In Fig. 1, three tests have been examined or their performance in diagnosing appendicitis. Each point on the ROC curves represents a different decision threshold. A test without discrimination would result in a straight line from 0,0 to 1,1. A test that achieves perfect diagnostic discrimination for a specific decision threshold will form a right-angle graph, going from 0,0 o 0,1 (where sensitivity equals 100% and there are 0 false positives) to 1,1. For two ROC curves that do not overlap, comparison of the areas under the curves can be used to decide if one test is superior to the other, by using statistical results developed elsewhere (3). Likewise, by comparison of individual points on two curves it is possible to determine whether statistically significant differences are present (3). Thus, the ROC curve is a useful visual guide to performance of a test both alone and in comparison with other tests. In Fig. 1, the visual interpretation is that the white blood cell (WBC) count is overall a better test for the diagnosis of appendicitis than is the percentage of WBCs that are band forms. Although whether the apparent superiority is statistically significant remains to be answered, the qualitative result is readily apparent.

Construction of the MultiROC curve. In MultiROC, a diagnostic rule is created from multiple tests, and the threshold of an individual component contained in the rule is varied to create the curve. The rule will typically consist of a Boolean expression (i.e., containing “and,” “or,” “not”) of different tests related by algebraic operators (addition, subtraction, multiplication, division, equivalence, less than, greater than) as the components of the expression. Each component of the rule is fixed at a diagnostic threshold except for one threshold, which is varied over all of its possible values, and the corresponding sensitivities and false-positive rates are plotted (e.g., “Diagnose as positive for the disease if test 1 is >100 or test 2/test 3 is greater than a variable threshold.”).

From the curve created, one can determine whether the rule component being varied can potentially improve diagnostic performance over the rest of the rule, whether the improvement is statistically significant, and how many diagnoses will be affected. Rules incorporating additional tests can likewise be constructed, and comparison with previous rules will indicate whether there is any potential incremental gain in sensitivity or specificity.

Visual interpretation of the MultiROC curve. Although the curves generated are similar in many respects to ROC curves, some unique properties assist in interpreting MultiROCs. Because a single variable is changed to create a MultiROC, a single graphical segment will always be formed, as short as a single point or potentially a curve extending from where the
sensitivity and false-positive rates equal 0 to where they equal 1, which is always true for a ROC curve.

To evaluate visually the contribution of the parameter being varied to the total rule, one can construct a rectangle with the two ends of the curved segment placed at opposing corners (Fig. 2). Interpretation within this rectangle is similar to a conventional ROC curve. If a straight line is formed between the two corners, then the parameter being varied adds no diagnostic information beyond chance alone (see Appendix). If it forms a right angle to the upper left hand corner of the rectangle, then the threshold at the upper left corner perfectly diagnoses a subset of the population that is not correctly diagnosed by the other parameters of the rule. As with a ROC, the greater the area under the curve but within the rectangle, the better the overall performance of the parameter being examined (8).

The height and width of the rectangle formed give a direct indication of the proportion of cases diagnosed by the test being varied (e.g., MultiROCs that form higher rectangles will affect a greater proportion of ill patients, whereas wide rectangles will affect a greater proportion of well patients). A MultiROC consisting of a single point implies that the test being varied will not change the diagnosis of any patients and therefore is not a useful addition to the rest of the existing rule. Not all cases are affected by the parameter being varied, because the fixed part of the rule may have already diagnosed the case as disease positive or negative.

Statistical interpretation of the MultiROC curve. The area under a ROC curve has been used to compare the overall performance of two tests, or whether a test performs better than chance alone (8). Similarly, comparison of the areas under two MultiROCs may be useful in determining which of two additional tests offers the most diagnostic gain to a rule. Drawing the rectangle framing the ends of the MultiROC curve (as described above and observed in Fig. 2) is mathematically equivalent to isolating the fraction of the population that is being diagnosed by the individual parameter being varied (see Appendix for further details). Within this rectangle, if one scales it to a 1×1 square one can calculate the area under the curve and process by using the standard methods previously described for the comparison of areas under a ROC curve (3, 8). A U-test, Wilcoxon test, or Mann-Whitney test (all produce equivalent results) can be performed on this subset of the total population to determine if the parameter being varied adds statistically significant discrimination beyond chance to the rest of the rule.

Another question is whether two points, on separate curves, are statistically different. Usually, points are chosen where either sensitivity or specificity is equal and the significance of the different estimates for the other parameter is examined. Comparison between one ROC and a MultiROC as well as between two MultiROCs is possible. Subjects and test specimens for each ROC or MultiROC should be identical to ensure that subtle errors in population selection will not bias results. As always, the subjects selected for testing should be representative of the population that will eventually be diagnosed by the tests in question. The methods are identical to those between two ROC curves and are further described in the Appendix.

Use of the area under a ROC or a MultiROC curve is often not appropriate in laboratory medicine. Because the underlying distribution of test values found in laboratory tests is rarely symmetrical and of equa variance between populations, curves for the same disease but derived from different tests will often cross over each other (Fig. 1). In these cases, a curve with less area beneath it may represent the preferred test depending on the desired sensitivity and specificity.

Software tools. MultiROCs can be generated by specialized or generalized computer programs. Most full featured spread sheets today are capable of the necessary calculations and the requisite plotting of results. All graphs presented here were calculated by use of Microsoft EXCEL (Microsoft, Redmond, WA).

Data source. As a test case, a well-known data set from the literature was examined by the use of MultiROC. Marchand et al. (9) examined the laboratory tests from 106 consecutive patients operated on for suspected appendicitis. They previously published the smoothed individual ROC curves of each test for the diagnosis of appendicitis, and three exact ROCs are presented in Fig. 1. In the following discussion, only the total WBC count and manually counted band-form percentages are analyzed.

MultiROC Results

The first MultiROC constructed used the rule, “Consider the test positive for appendicitis if the WBC count is $\geq 10^9/L$ or the percentage of WBCs that are band forms is greater than or equal to a variable to be determined,” where all band-form percentage values from 0 to 100 are examined. Interpreting Fig. 2, we see the performance tradeoff of the composite rule for all selected cutoff band-form percentage values.
Each point on the curve represents the rule performance resulting from selecting a different threshold for the variable part of the rule. Specifically, the point of the curve labeled 6 corresponds to the rule, “Consider the test positive for appendicitis if the WBC count is $>10^6$/L or the percentage of WBCs that are band forms is >6%.” Because the morbidity of operating for a nonexistent appendicitis is less than that from peritonitis, it is reasonable to select a decision rule that emphasizes sensitivity at the expense of specificity. Note that only above 10% does the sensitivity drop off. Of the 27 cases with WBC values $\leq 10^6$/L, 12 are from patients with proven appendicitis. One can use either the area under the curve within the box shown in Fig. 2 or the Mann–Whitney U-test to show the band-form percentage values from these 27 patients add discriminatory value above that of the fixed WBC threshold value of 10^6/L alone ($P < 0.01$). If one only knew whether the WBC count was above or below 10^6/L, then the percentage that was band forms would significantly add discriminatory ability. The height and width of the dashed rectangle in Fig. 2 indicates that the band-form percentage threshold chosen will affect the diagnosis of ≈ 14% of the disease-positive and 71% of the disease-negative patients in the total study. The band-form threshold affects the diagnosis of only this subset decision because all other patients have WBC counts $>10^6$/L and have therefore already been categorized.

Selecting a threshold of 10% band forms, a logical next question would be to examine the WBC cutoff in our rule to optimize its decision threshold. Fig. 3 shows the MultiROC of the rule, “If the WBC count is greater than or equal to a variable (to be determined) or the band-form percentage is ≥ 10%, then we conclude that appendicitis is present.”

As Fig. 3 shows, if the rule is, “Consider laboratory tests positive for appendicitis if the WBC count is $\geq 8.8 \times 10^6$/L or the band-form percentage is ≥ 10%,” then a sensitivity of 99% and a specificity of 57% are obtained from this data set.

It is not necessary to stop at this point, because more complex rules involving ratios or more tests are possible. This brings out the power of the MultiROC concept, for one can use and refine any rule with which one is familiar or that makes medical sense. The performance of the final rule should be statistically compared with simpler rules to determine if significantly greater discriminatory ability has been added.

The use of MultiROC helps to avoid illusory performance gains from panels of tests. As can be seen from the data of Chan (10), the combination rule for positives, “If the prostate-specific antigen (PSA) is >4.0 or the prostatic acid phosphatase (PAP) is greater than a variable threshold,” offers more sensitivity (91%) than using the PSA threshold of 4 μg/L alone. However, as seen in Fig. 4, there is no advantage in combining the two tests. The MultiROC has performance equivalent to that of PSA alone at only two points and is inferior at all other PAP thresholds.

MultiROC Comments

Because diagnostic decisions combining multiple tests are commonly encountered in medicine (5–7), the ability to compare their relative performance across a variety of decision thresholds is as desirable as the ability to compare individual tests. The utility of ROC analysis has been limited by the fact that it examines only one test at a time. A MultiROC compares the performance of multivariate rules, rather than individual tests, and yet retains the simplicity of interpretation of the ROC curves. It has been suggested that decision rules will be ignored if they are not understandable, even if demonstrated to perform correctly (11). MultiROC avoids this danger by allowing the user to create his or her own intuitively correct rules, although it does not guarantee that the optimal combination of tests will be chosen. Where statistical exactness is desired, the host of statistical tools previously created for the ROC curve are adaptable and

Fig. 3. MultiROC and ROC curves.

*Interrupted line, ROC curve for WBC count; heavy line, MultiROC curve for the rule. In this case, the rule is, “Diagnose appendicitis if the band-form percentage is ≥ 10% or if the WBC count is greater than or equal to a variable threshold.” The best variable point appears to be a WBC count of 8.8×10^6/L.

Fig. 4. Prostatic MultiROC and ROC curves compared.

The rule combining PSA and PAP concentrations is inferior at all but terminal points to the use of PSA concentrations alone. There is no benefit in using the rule, no matter what PAP concentration is chosen as part of a rule.
applicable to MultiROC (3). A second strength of the MultiROC concept is the ability to build on previous rules to derive rules with superior performance. Finally, as with other types of statistical analysis, this method provides insight into the relative pathophysiological importance of the parameters used in the creation of rules. For instance, the example suggests that the WBC differential adds important information beyond simply knowing whether the total WBC count is above or below 10^10/L in the diagnosis of appendicitis.

A categorical test (i.e., data that are not quantifiable, such as the presence or absence of a morphologic feature on a tissue stain) can be incorporated into a rule also but results in a single point(s) if it is the parameter varied. For this reason, it is more useful to vary the other parameters of a rule containing categorical data. For example, a Boolean rule that specifies, “If a positive psa test is present and the WBC count is greater than a variable threshold,” will result in a MultiROC even though the psa test is not quantitative. Categorical semiquantitative data, even though not evenly ordered, can be treated as any other quantitative variable. Thus, the use of “0, 1+, 2+, 3+” or “none, few, many” to describe a parameter such as iron stores on a bone marrow slide or the presence of eosinophils on a tissue section is completely compatible with the MultiROC method.

A common problem with statistical methods is lack of independence among the various tests being combined. Results of analysis from highly correlated tests are typically imprecise, leading to large errors of estimation. The lack of independence of individual tests in rule-based systems has been rarely addressed. In the case of MultiROC, the structure of the rule will be a factor in how reliable the results are. In general, when each component of a rule separated by “and” or “or” contains a single test, such as the rule in Fig. 1, the rule will result in relatively stable performance even when the tests are highly correlated. When two or more tests are contained in a component of the rule, the result begins to be subject to the problems found with traditional statistical procedures. If a rule derived by MultiROC is, “Diagnose positive if test A/test B > 100 or test C is greater than variable,” the performance of the rule is more sensitive to a high correlation between tests A and B than between test C and either of the other two.

A MultiROC can answer whether a new test should replace an older test, be used in combination with the older test, or form a component of a larger panel with the older test. Two identical ROC curves do not allow one to determine whether the two tests are duplicates of each other (and hence the more expensive should be discontinued) or whether the tests address different subsets of the total population so that the combination of the two tests may offer superior performance. MultiROCs will allow discrimination between these two alternatives by using the medical intuition of the laboratory scientist as a guide in the creation of reasonable rules.

Although multivariate statistics is accepted to be a complex subject, the traditional simplicity of ROC analysis has been preserved with MultiROC. A single glance at a MultiROC reveals the performance of the rule as a whole and the worth of the particular component being examined. The number of cases affected by the new component is graphically displayed, and comparison with tests of no discrimination and perfect diagnostic ability on that subset of cases is readily apparent.

A danger in the creation of a MultiROC is the ability to refine a rule only for a particular data set and therefore derive too optimistic an evaluation of its general performance. This problem in predictive analysis exists anywhere the set of data used to derive diagnostic rules is also used to evaluate their performance. The danger is decreased by deriving the rule from part of the data set and using the remaining data to evaluate the rule. Another method is “leaving one out,” where the rules are developed but a sample is left out of the analysis. The single sample is then diagnosed by the rule. This process is done successively for every point in the database, and a final estimate of the sensitivity and specificity of the rule is obtained. This method, called jackknifing (12), provides a more accurate estimate of the true performance of the diagnostic rule achieved but, to be practical, requires a computer. Other methods include bootstrapping (12) and, potentially, smoothing of the curves constructed. I am unaware of a suitable method for smoothing the curves created by MultiROC currently. Hopefully, these or other methods can be incorporated into programs dedicated to calculating MultiROCs.

Contained in the MultiROC concept is simultaneous variation of more than one threshold in the rule. This would create a graphical area with the traditional ROC axes, rather than a single-line segment. Interpretation and refinement of this extension are potential areas for exploration. Computer demands would be significantly greater than those of the more limited MultiROC presented here.

MultiROC Analysis in Outcomes Analysis of Prostatic Screening

Prostate screening programs for men older than 50 years are increasing each year and are at least partly responsible for a sixfold increase in radical prostatectomies between 1984 and 1990. Although a significant number of men die each year from prostate cancer, in a much larger number their prostate cancer remains indolent. In addition, screening is expensive and there are significant morbid side effects to surgical treatment for prostate cancer. As a result, studies have called into question the overall cost effectiveness of prostate screening (13–15). Although these studies typically compare different sequential test strategies, they have not examined the effect of different test decision thresholds on the overall results. Another issue ignored is that, although results are often stratified by age, the studies have not considered the differences in PSA test
performance that result from the different specificity of PSA at different ages.

This article extends a previously published outcomes analysis (15) to include the effect of choosing different PSA decision thresholds. In the prior study, the dollar costs per life-year saved were examined with two strategies. In the first strategy, it was assumed that men ages 50–70 years would undergo a screening PSA evaluation and would be followed up by transrectal ultrasound (TRUS) evaluation and digital rectal examination (DRE) if the screening PSA was >4 μg/L. Those positive by PSA and one of the other tests would receive a biopsy, and patients with positive biopsies would undergo radical prostatectomy. In the second strategy, there would be no screening procedure, and patients would be dealt with when prostatic carcinoma appeared clinically, with the use of radiation and hormonal therapy for symptomatic relief. The estimated number of life-years lost were calculated on the basis of the patients' normal expected life span and the expected life span based on the two strategies. With an iterative process [Markov model (16)], the costs and life-years were incrementally computed each year, and the cost per life-year saved was computed. The overall undiscounted incremental costs per life-year over no screening varied from $47,000 at age 50 to $102,000 at age 70 years. The effects of many of the parameters were examined for impact on the final result (sensitivity analysis). However, the sensitivity of the results to different decision levels (i.e., different than 4 μg/L) was not analyzed. In addition, the fact that test performance can be expected to vary with the patient's age was not taken into account. This is potentially an important variable to examine. Although younger men have a lower incidence of prostatic cancer, this is offset by their lower PSA concentrations (17), increasing the specificity of PSA determination in a group who have the most to be gained by an early correct diagnosis. The prior study was therefore extended to include analysis assuming various thresholds in differing age groups.

The model was replicated by using the publication (15) and a supplemental report describing its details. (The detailed decision model and methods are available as document 05144, National Auxiliary Publication Service, P.O. Box 3515, Grand Central Station, New York, NY 10163-3513.) The present study adopted their assumptions and calculations and should not be regarded as an independent assessment of its validity. Fig. 5 shows a decision tree of the decision model that was implemented. The square box indicates where the two strategies diverge. Circles indicate where different results occur based on estimated probabilities. For the 15 years after the beginning of the model, all patients are followed annually to see whether they remain well, have cancer without or with progression, or have a cancer or a noncancer-related death. The probability of each event represents the best estimates of results found in the literature by the authors of the previous paper and were adopted with as little change as possible for this paper. The costs associated with the two strategies were also evaluated, allowing the ratio of cost per life-year saved to be calculated.

Life tables from 1990 were used as the source of life expectancy estimates (18). Age-specific estimates of the distribution of PSA in apparently healthy men were adopted from the report of Oesterling et al. (17). The stage distribution of PSA in men with prostatic cancer was taken from the report of Hudson et al. (19). An estimate of the combined sensitivity and specificity of the whole screen [PSA, TRUS, and DRE combined] was done by first combining tests while assuming conditional independence of the individual components and then adjusting the totals by multiplying by a single correction factor the totals observed when multiple tests were used in a screening program (15, 20). This procedure allows for test covariance where it is not known more exactly. With the two sets of data, age-corrected estimates of the sensitivity and specificity of the MultiROC rule, "If either TRUS or DRE is positive and the PSA is greater than a variable decision cutoff, then the screen is positive," were derived. These derived estimates of sensitivity and specificity were then substituted into the replicated model of Krah et al. (15) to derive new estimates of the cost per life-year saved.

Outcomes Modeling Results and Comments

The overall cost per life-year saved decreases with an increasing decision threshold at all ages (Fig. 6). The data for men at age 75 years is not graphed because of the estimated net decrease in life expectancy at all decision levels. This differs from the original study by Krah et al. (15), which found screening expensive but showed a net gain in life expectancy at age 70 years. The difference reflects the poorer performance of the PSA test when adjusted for age. The most benefit is achieved for younger men at decision thresholds that are very specific (i.e., have very few false positives).
The data from Oesterling et al. contain estimates only up to the 95th percentile (17). Using even higher decision thresholds would probably result in still more cost per life-year gains.

The overall cost per life-year is still higher than that generally spent on other programs, making the use of general prostate screening difficult to justify. Because results calculated here are in nondiscounted dollars (not devalued for the costs and benefits occurring in the future), direct comparison with other studies is difficult. The study by Krahn et al. (15) estimated that discounting would more than double the cost per life-year gain. By this rough approximation, an example of less expensive treatments per life-year saved is hospital hemodialysis, whereas technology in a comparable price range is treatment of asymptomatic hyperlipidemia with cholestyramine (21). This is the same conclusion as put forth in the paper that was extended by this analysis. Two factors would change this conclusion: If the treatment were more effective with lower morbidity overall, costs would be reduced and the resulting cost:benefit ratio might be within generally accepted fundable limits; or, a method could be developed for more accurate prediction of which carcinomas would eventually cause morbidity and decreased mortality. In a sense, the sensitivity and specificity of the tests described are illusions. They do reflect test performance for detection of prostatic cancer but not for the detection of clinically important prostatic cancer. Much of the cost and morbidity of the screening approach comes from treatment of carcinomas that would not have caused clinical disease in the patients’ lifetime. Although the grade and size of the tumor correlate with eventual outcome, these are both imperfect measures and difficult to ascertain accurately before surgery. Newer analyses, perhaps via ploidy analysis, gene probes, or the presence of specific antigens, may help detect the truly significant cancers.

A weakness of this study is that the staged PSA values chosen (19) were not screening values but rather represented the PSA of men going to surgery for clinically apparent disease. One might assume that their PSA would be higher than that in screening populations and therefore more easily detected. Comparison with the limited data from screening populations that are available does not indicate a significant difference (20). However, the overall costs would be biased lower than they would be with a true screening population, and the conclusion would be reinforced. It would also be desirable for the positive and negative patients to be drawn from the same population. Large trials are currently in progress to realize this, but the current data represent the best estimates available.

Conclusions

The method presented forms a superset of the features offered by traditional ROC analysis. Incorporation of this method into routine test evaluation offers significant promise for determining the incremental gain offered by new tests as well as the diagnostic utility of existing or potential panels of tests.

An example of MultiROC decision analysis based on concepts familiar to the laboratory but absent in a recent prominent outcomes analysis on prostatic cancer was presented. Although the general conclusions of the prior paper were not changed, the results were significantly affected by consideration of the tradeoff between sensitivity and specificity that is made clear by ROC or MultiROC analysis. Extension of test performance analysis to include outcomes is both feasible and necessary if the laboratory professional is to support the needs of patients, physicians, and society.

Appendix

Definitions.

1. A MultiROC rule consists of two parts, a fixed proposition and a ROC proposition, connected by “and” or “or” (e.g., if test A > 100 or test B > a variable). When there is no fixed proposition as part of the MultiROC, the MultiROC is a conventional ROC proposition.

2. A fixed proposition consists of 0–n simple propositions between test variables and constant thresholds connected by “and,” “or,” and “not” (e.g., “test A > 100 and test A/test B < 3”). It maps all values (e.g., cases) to a single value, either true or false.

3. A ROC proposition is a statement of an inequality between a test variable and a variable threshold. It maps (a) the fraction of cases in a set to points that satisfy an equality and are truly positive for an attribute to the y coordinate of each point and (b) the fraction of a truly negative set falsely classified as positive by the inequality to the x coordinate.

4. A MultiROC graph is formed by graphing the sensitivity (y-axis) vs the false-positive rate (x-axis), achieved by varying the ROC proposition over all values possible for its variable parameter.

Thesis. If one takes the rectangle formed by the end points of a MultiROC and scales it and the interior graph proportionately so as to form a 1 x 1 square, then the resulting graph is itself a ROC graph.

Proof. Let some MultiROC rule consist of a fixed
proposition called F and a ROC proposition called R connected by a logical "or" (e.g., if test A >100 or test B > variable). Let \(x = \{x_1, \ldots, x_m\} \) be cases that are truly negatives for the attribute in question. Let \(y = \{y_1, \ldots, y_n\} \) be those that are truly positive. Because the original rule is an "or" rule, satisfying either proposition satisfies the whole MultiROC rule. Therefore, \(FPF = \{x_1, \ldots, x_m\} \) is finally classified and can be removed from further consideration. Then \(FPF = \{x_1, \ldots, x_m\} \) is finally classified and can be removed from further consideration.

Because the threshold varies in the ROC proposition, zero or more additional cases in \(x \) will satisfy the ROC proposition and will increase the false-positive rate by zero or more. Then let \(FPF = \{x_1, \ldots, x_m\} \) be the maximal false positives mapped by the MultiROC rule and \((fp + n)/m \) be the \(x \) coordinate of the upper-right corner of the rectangle. It can be seen that \(n \) cases alone are affected by the ROC proposition portion of the MultiROC rule.

Scaling the rectangle bounding the MultiROC to a \(1 < 1 \) square will divide all \(x \) coordinates by the fractional "width" of the rectangle. Let \((fp + n)/m \) be the \(x \) coordinate of a point in the original rectangle for a particular threshold in the MultiROC graph. Then a scaled \(x \) coordinate will be

\[
\frac{(fp + n)/m - fp/m}{fp + n/m - fp/m} = \frac{x}{n}
\]

but this is the same as the false-positive rate of the subset of \(n \) points for the particular threshold; therefore, each \(x \) coordinate of each point of the scaled rectangle satisfies the definition of a ROC curve.

All of the above follows also for the set of truly positive cases, and the points mapped in the scaled rectangle satisfy the \(y \) coordinate of a ROC curve. Also, every statement with a logical "and" can be converted to an equivalent statement with a logical "or" by using the contrapositive. Therefore, the above proof also applies to MultiROC when "and" is used; i.e., the scaled rectangle is itself a ROC for all MultiROC.

Statistical aspects. Within a scaled MultiROC rectangle, the Wilcoxon (or Mann-Whitney) test is used, or calculation of the area under the curve and confidence regions can equivalently be performed. This will determine whether the ROC portion of the rule adds diagnostic value to the fixed portion. It can also be used to determine if one rule is superior to another, assuming that both rules lie within the same rectangle.

Between two individual points, one can calculate a \(\chi^2 \) value from which is determined the level of significance \(P \) of the difference in performance between the two ROCs or MultiROCs at the sensitivity/specificity level in question.

\[
\chi^2 = (t - f - 1)^2/(t + f)
\]

where \(t \) equals the number of cases that were correctly labeled by the ROC A test/rule and incorrectly labeled by the ROC B test/rule and \(f \) equals the number of cases that were incorrectly labeled by the ROC A test/rule and correctly labeled by the ROC B test/rule.

Data from the studies of Chan (10) and from Marchland et al. (9) were used in the examples presented. Their contribution is gratefully acknowledged.

References