limitations with respect to correcting concentrations of urinary nicotine metabolites with the creatinine concentration have been detailed by Watts et al. (5).

Undoubtedly, the differences between the various studies, particularly those of Peach et al. (2) and ourselves, relate directly to the subjects investigated. In our case, a group of patients, mostly aged, with diabetes mellitus and associated complications such as nephropathy and hypertension were assessed; Ellard's focus, in contrast, was directed at predominantly healthy subjects, where the validity of his methodology has been established. However, as our results imply, generalization of Ellard's methodology to other patient groups, and in our case to hospital patients with multiple disorders, may not be appropriate. More-specific procedures (ELISA, HPLC, gas chromatography, or gas chromatography/mass spectrometry) may be necessary.

References

George Phillipov
Patrick J. Phillips
Endocrine and Diabetes Service
The Queen Elizabeth Hosp.
Woodville, South Australia 5011

Mild Course of Cystic Fibrosis in an Adult with the D1152H Mutation

To the Editor:

Diagnosis of cystic fibrosis (CF) is based on the presence of chronic pulmonary lung disease, pancreatic insufficiency, and increased concentrations of electrolytes in sweat. Measurement of sweat sodium or chloride remains the laboratory confirmation of diagnosis. The disease begins early in life, so the diagnosis is usually made in childhood, although a few adult patients with a mild course of disease are identified later. The cloning of the CF transmembrane conductance regulator (CFTR) gene permits the identification of mutations in CF patients. The ΔF508 deletion accounts for ~70% of CF chromosomes; in the remaining CF chromosomes, 500 rare mutations have been described so far by the CF Gene Analysis Consortium. Only two mutations have been reported in CF patients with normal concentrations of sweat chloride: two patients homozygous for G551S (1) and patients homozygous for 3849 + 10 kb or composite heterozygous 3849 + 10 kb/ΔF508 (2).

We report here a patient with a mild clinical syndrome of CF, equivocal sweat test results, and the genotype ΔF508/D1152H. The procedures followed were in accordance with the Helsinki Declaration of 1975, as revised in 1983.

The patient, a nonsmoking 46-year-old woman complaining of moderate dyspnea, had been suffering from bronchitis since childhood with a progressively increased frequency of acute respiratory tract infections. At age 42, a bronchographic study demonstrated the presence of bilateral bronchiectasis, mainly in the upper lobes. Cytologic investigation of the spum showed methicillin-sensitive Staphylococcus aureus. On admission to hospital, her weight was 60 kg and her height was 1.7 m; she had no symptom related to the gastrointestinal tract. The respiratory symptoms included only moderate dyspnea. Respiratory function tests showed moderate obstruction: forced expiratory volume in one second (FEV1) was 21 (70% of predicted), FEV1/vital capacity was 67% of predicted, functional residual capacity was 2.25 L (125% of predicted), and pulmonary capacity was normal. Treatment with β2-agonist did not improve the respiratory function.

Repeated measurements of sweat chloride concentrations gave results of 30 and 56 mmol/L by a skin chloride system (Orion Research, Boston, MA) and 24, 79, and 72 mmol/L by the pilocarpine iontophoresis method of Gibson and Cooke with sweat samples >0.1 g (normal values <60 mmol/L). Denaturing gradient-gel electrophoresis of amplified exon 18 of the CFTR gene from the patient showed an abnormal pattern. Direct DNA sequence analysis showed a heterozygosity for a G to C substitution at nucleotide 3586. The substitution results in replacing Asp 1152 with histidine. The ΔF508 mutation was found in the other allele.

This D1152H mutation has been previously observed in one CF family with a mild phenotype (by W. Highsmith et al.; personal communication) and in patients with congenital bilateral absence of vas deferens (CBAVD) (3). In conclusion, this report shows the importance of mutation screening in uncertain CF diagnosis.

References

Delphine Feldmann1,a
Jacques Rochemauf2
Elisabeth Plouvier3
Catherine Magnier3
Corinne Chauve1
Pierre Aymard1

1 Lab. of Biochem.
Hôpital A. Trousseau
26 ave. du Dr. Arnold Netter
75571 Paris Cedex 12, France
Hôpital de l’Hôtel Dieu
Paris, France
3 Author for correspondence.

Highly Specific Immunoassay for Cardiac Troponin I Assessed in Noninfarct Patients with Chronic Renal Failure or Severe Polytrauma

To the Editor:

Cardiac troponin I (cTnI) has recently been defined as a new marker for the diagnosis of myocardial injury detected by selected monoclonal antibodies (1, 2). The particularity of this isorm is its presence exclusively in cardiac muscle. Several articles (2–6) report studies on the spec-