92% had THCA concentrations ≥30 μg/L. Of the 97 specimens that screened negative at 100 μg/L, 80% had quantitative values for THCA of ≥30 μg/L. This suggests that reducing the screening cutoff to 50 μg/L will not result in laboratories being flooded with large numbers of specimens for which the THCA concentrations are within 20% of the 15 μg/L confirmation cutoff.

The THCA-positive detection rate for the 30 402 specimens analyzed at the 100 μg/L cutoff was 0.94%. This rate was increased to 1.26% by lowering the cutoff to 50 μg/L. We conclude that the effectiveness of drug detection programs will be enhanced by reducing the screening cutoff for cannabinoids. The cost-effectiveness of a company's drug testing program is often determined by calculating the cost per positive test. However, the true expense of drug testing is based on the cost of collection, transportation, laboratory analyses, and Medical Review Officer services. The additional specimens associated with positive results will increase the laboratory cost for the additional confirmations, but the other costs involved in drug testing will remain the same. Therefore, the cost-effectiveness of a company's drug testing program based on the cost per positive specimen will actually decrease because of the increased detection rate for cannabinoid use. Any increase in cost due to additional confirmations will be offset by economic savings to employers because of financial liabilities associated with the employment of drug users.

References

Barbara J. Rowland1,2
Elizabeth S. Keith3
1 Roche Biomed. Labs. Southaven, MS 38671
2 Dept. of Biol. Memphis State Univ. Memphis, TN
3 Author for correspondence.

Lipoprotein(a) Further Invalidates Friedewald Formula

To the Editor:
Li et al. in a recent article (1) concluded that the Friedewald formula should be modified to take into account the contribution of lipoprotein(a) ([Lp(a)] cholesterol to total serum cholesterol. Earlier (2), we had shown that the Friedewald formula is invalid for estimating low-density lipoprotein (LDL) cholesterol because it provides cholesterol values that derive from both LDL and Lp(a) cholesterol. This is particularly true for subjects with high concentrations of plasma Lp(a). Until suitable methods for the independent measurement of LDL and Lp(a) cholesterol are developed and generally accepted, it should be recognized that LDL cholesterol values calculated from the Friedewald formula are inaccurate.

References

Angelo M. Scani
The University of Chicago
Chicago, IL 60637

Lipoprotein(a) is included in Low-Density Lipoprotein by NCEP Definition

To the Editor:
The recent report by Li et al. (1) appropriately demonstrates the contribution of lipoprotein(a) ([Lp(a)] to low-density lipoprotein cholesterol (LDL-C) as estimated by the Friedewald equation (2). Since the Friedewald equation is used almost universally in the routine clinical laboratory to estimate LDL-C, the primary decision quantity in determining the risk of cardiovascular heart disease (CHD) and monitoring treatment, this observation will be of interest to many laboratory workers. The authors' recommendation that the Friedewald equation be modified to account for the contribution of Lp(a) deserves comment.

The complicated nature of the lipoproteins leads to complex nomenclature and consequent confusion about the terminology. The Friedewald equation (2) [LDL-C = total C − (HDL-C + 0.2 triglycerides)], which has provided a convenient approach to approximating LDL-C, was proposed in 1972. Lp(a), although reported in 1963 (3), was not well characterized during the subsequent decade. The Friedewald triglyceride (TG) factor was selected to approximate the very low-density lipoprotein cholesterol (VLDL-C) obtained by ultracentrifugation as part of beta-quantification (BQ), the common research method used in the US Lipid Research Clinics and other major population studies (4). BQ is now generally accepted as the accuracy target for lipoprotein quantification and is the basis for the Reference Method for LDL-C used by the Centers for Disease Control and Prevention (CDC) (5–6). The BQ method separates VLDL-C by ultracentrifugation at d 1.006 kg/L and high-density lipoprotein (HDL-C) after precipitation of the other lipoproteins. LDL-C is calculated as the cholesterol in the d > 1.006 kg/L fraction minus that in the HDL fraction. Since the precipitation methods precipitate Lp(a) together with LDL-C and VLDL-C, the LDL-C fraction determined by BQ includes any Lp(a) present as well as the usually small amounts of intermediate-density lipoprotein (IDL-C) with d 1.006–1.019 kg/L. Thus, BQ (and the CDC Reference Method) obtains a so-called “broad-cut” LDL-C fraction that is approximated reasonably well by the Friedewald equation, avoiding the tedious ultracentrifugation step.

An expert laboratory panel of the US National Cholesterol Education

References