Information for Authors

Except for our insistence on SI units, this Information essentially concurs with the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals."

Clinical Chemistry, issued monthly, is published under the direction of an Editorial Board of the American Association for Clinical Chemistry, Inc. Equal consideration is given to original manuscripts in English from any country, whether or not the author is a member of the Association.

Excellent scientific work deserves excellent presentation—but frequently suffers a lack of it. The aim of these instructions is to expedite publication by making it easier for potential authors to present their work in a form that will minimize editorial revision and delay.

Copies of this Information are available on request.

Scope

Clinical Chemistry welcomes contributions on the application of chemistry to the understanding of the human organism in health and disease. Articles submitted for publication should contain original information, experimental or theoretical, that advances the science of clinical chemistry. This includes (e.g.) basic materials or principles, analytical techniques, instrumentation, data processing, statistical analyses of data, clinical investigations in which chemistry has played a major role, and experimental (laboratory animal) investigations of chemically oriented problems of human disease.

Other appropriate contributions include reviews, case reports, case conferences, scientific notes, technical briefs, and letters to the editor, all of which must be prepared in the form described below. Prospective contributors should consult recent issues of the journal to determine the appropriate category for their contribution, as well as for examples of acceptable style.

Submission of Manuscripts

Manuscripts and other editorial correspondence should be addressed to J. Stanton King, Ph.D., Executive Editor, Clinical Chemistry, Box 5218, Winston-Salem, NC 27113-5218. Authors should keep copies of everything submitted.

Manuscripts (with a covering letter) are considered for publication with the understanding that, if accepted, copyright is transferred to the publisher, and no paper presenting the same information—other than an abstract or preliminary report—has been or will be published elsewhere. Clinical Chemistry is copyrighted by the Association. Permission to reproduce copyrighted material for scholarly use can be arranged through the Executive Editor; that for commercial use, through the Business Office.

An original typescript and one copy of the manuscript (and two copies of any later revision) are to be submitted, in typewriter double-spacing (or word-processor triple-spacing) throughout (including abstract, references, tables, figure legends, and footnotes), on one side of the paper, with wide margins. Each copy must include all figures and tables. A separate sheet should be used for the title page, with authors' names and affiliations, and another for the abstract. References, tables, figure legends, and footnotes should be grouped on separate sheets, in that order. Every page, beginning with the title page, should be numbered. All pages should carry the name of the first author in the upper right corner. If the current address of any author differs from that where the work was done, or if reprints are to be requested from someone other than the first author or from an address other than that where the work was done, say so in a footnote.

Review of Manuscripts

Manuscripts will be evaluated by two anonymous persons, either members of the Editorial Board or qualified invited reviewers. Manuscripts are considered privileged information by the reviewers, who are expected to disqualify themselves before reviewing papers in cases where there may be a possible conflict of interest.

When reviewers clearly disagree on the merits of a manuscript, a referee will generally be asked to examine it. The reviewers' critiques will be included when the author is notified of the disposition of the manuscript (usually not later than six weeks from receipt) by the Executive Editor, who makes the final decision. If the manuscript is rejected, the author may appeal in writing, giving reasons why the manuscript should be reconsidered.

The principal desiderata for an acceptable paper are:

- subject matter that is original and significantly advances the state of knowledge of clinical chemistry
- conclusions that are justified from the design of the experiments and the data presented
- information that is sufficiently detailed to permit replication of the work by a competent clinical chemist
- clear, concise, and grammatical writing.

Manuscript Preparation

The principal style guides for the author should be the ACS Handbook for Authors (1), and the Council of Biology Editors Style Manual (2). Only critical preparation of the manuscript can enable the author to avoid obscure wording, neologisms, "laboratory slang," and unfamiliar (and undefined) terminology (3).

There is no rigid prescription for organization of papers acceptable for publication in Clinical Chemistry, but manuscripts generally include the following sections: title, abstract, introduction, materials and methods, results, discussion, and references.

Letters to the editor and technical briefs should be submitted in the same format as they appear in the journal (consult recent issues of Clinical Chemistry).

Title

The title should be specific, informative, and concise. Symbols, formulas, or arbitrary abbreviations should not be included in the title, except for chemical symbols to indicate the structure of isotopically labeled compounds.

Abstract

An abstract, intelligible by itself, should be included in all contributions to Clinical Chemistry except letters to the editor, technical briefs, and case conferences. The abstract, not to exceed 150 words, summarizes the plan, procedures, results, and conclusions of the investigation. Remember that the abstract will be the most widely read portion of the paper and will be used by the various abstracting services.

The Executive Editor will select "Additional Keyphrases" not found in the title.
Introduction

Concisely indicate the importance of the work, its relation to previous work, and (if it is a method) reasons why it is preferable to older methods.

Materials and Methods

The material to be presented dictates the way in which this section is written. Whatever the arrangement, the following topics are usually present:

Apparatus. Apparatus should be identified, including manufacturer's name and address (city, state) and model number if different versions exist. Further details are necessary only when the equipment is not standard. If standard apparatus has been modified or new apparatus built, list the components and their sources, along with directions from which the equipment can be duplicated.

Reagents. All reagents used may be listed; only special or unusual ones need be described in detail, and their source mentioned. If purity or stability of reagents is critical, particulars about the source, degree of purity, and preservation should be included. Only novel details of preparation or purification of reagents need be described.

The pH and composition of buffers should be unambiguous; a standard reference can often be cited. The temperature at which critical pH measurements are made should be stated. Make clear whether the concentrations in a reaction mixture represent final concentrations or the original concentrations of the solutions mixed.

Procedures. Where procedures are intended as instructions for other workers, use of the imperative mood is both clearer and more succinct. Published procedures should be cited but not described, except where a brief résumé of the principle of a method or modifications of it is appropriate.

Adequate details of critical steps (e.g., collection and storage of samples), standardization, calibration, and calculation of results are necessary to permit the work to be repeated by a competent clinical chemist. Mention any potential hazards in the procedure.

Results

These should be presented in concise and simple language, with use of tables or graphs for clarification if necessary.

Discussion

This section should discuss significance of results and lead to a valid conclusion. Results and conclusions should be compared and contrasted with those of comparison methods or previous studies. Interpret the results here but do not recapitulate them. Such matters as time- and cost-savings, special problems, interferences, effect of order of reagent addition, and color stability are appropriate to this section. Sometimes clarity is improved if discussion is intermingled with results in a single section, but if this is done the author should clearly distinguish speculation and fact.

Acknowledgments

Acknowledgments of financial support, gifts, technical help, or other assistance (especially that rendered by a company in evaluation of a product) are made in a brief paragraph preceding the references. A statement regarding possible conflicts of interest follows these instructions.

References

References to the literature should be listed by number in the order of their appearance in the text. The citations in the text should be indicated by underlined Arabic numerals in parentheses. Reference examples:

Journals

Books and monographs (except serial volumes, which are treated as journals)

If there are more than six authors, list the first three and "et al." It is helpful to indicate that a reference is an abstract, letter, technical brief, or review when this is the case.

Journal abbreviations are those used both by Chemical Abstracts and Biological Abstracts.

It is the author's responsibility to verify the accuracy and adequacy of reference information. This is where most errors appear—and persist, because the editorial office does not routinely check references. Only essential references should be cited; cite review articles when appropriate.

Avoid listing references to unpublished work, manuscripts in preparation, verbal reports given at meetings, and personal communications. This type of information should be mentioned parenthetically in the text. References to papers in press may be included among the references; it may be advisable to enclose copies of such papers, to assist in the evaluation of the manuscript. Citations of published abstracts may be included, but should be avoided.

Abbreviations

We discourage the unnecessary use of new abbreviations, such as acronyms. A few such abbreviations may aid readability; a profusion of them does not. If more than two are used, all nonstandard abbreviations must be defined in a single footnote in the text at the point where the first is used. Abbreviations, if previously defined, may be used in figures, tables, and equations. Letter combinations that form words or that are already in current use as conventional abbreviations for other terminology must be avoided. Abbreviations listed in the recommended references (1, 2) may be used, and internationally agreed-upon biochemical symbols and abbreviations, considered standard, have been collected from the literature in the IUB document Biochemical Nomenclature and Related Documents (1978).

The Association has officially accepted (4) the recommendations of the Commission on Clinical Chemistry of the IUPAC and the IFCC on a standard international (SI) system of units. The following examples include abbreviations appearing most commonly in the journal; others can be found elsewhere (5). Examples of abbreviations that are no longer acceptable are also given. Consistently use the proper units in text, figures, and tables. Notice that periods do not follow the abbreviations.

Prefixes for decimal factors:

- 10^3 kilo- k 10^{-6} micro- μ
- 10^{-1} deci- d 10^{-9} nano- n
- 10^{-2} centi- c 10^{-12} pico- p
- 10^{-3} milli- m 10^{-15} femto- f
Length: m, cm, mm, μm, nm (not acceptable: in., ft., yd., Å, m̅).
Area: m², cm², mm², μm² (not acceptable: sq. in., in.², u²).
Volume: L, mL, μL, nL, pL (not acceptable: pint, gallon, cc, ccm, l, μl).
Mass: kg, g, mg, μg, ng, pg (not acceptable: oz., lb., Kg, gr, gm, gms, mgm, mgms, mgs).
Mass concentration: kg/L, g/L, mg/L, μg/L (not acceptable: %, g/ml, ppm, mg %).
Substance concentration: mol/L, mmol/L, μmol/L, nmol/L (not acceptable: M, N, mEq/l).
Temperature: °C (not acceptable: °, C).
Time: s, min, h.
Density: kg/L.
Relative density: This term replaces "specific gravity."
Absorbance: A.
Radioactivity: Ci, mCi, μCi.
International (IUB) units of enzymic activity: U (amount), U/L (concentration).
Coefficient of variation (relative standard deviation): CV.
EDTA, ethylenediaminetetraacetate.
Tris, tris(hydroxymethyl)methylamine.
RIA, radioimmunoassay.
HPLC, "high-pressure" or "high-performance" liquid chromatography.
Use official USPS two-letter abbreviations for state names.
Illustrations
Use figures only when they have real utility. Mathematical formulas or a statement of numerical values may often substitute for a figure, especially one showing a linear relation.
All line drawings and halftones (and such material as computer printouts) should be submitted as camera-ready copy (glossy prints). Illustrations should not be mounted or attached in any way to sheets of paper. Photographs or prints must not be larger than 22 × 28 cm or smaller than 5 × 8 cm. If it is necessary to submit original figures, rather than the preferred glossy prints, they should be drawn with India ink on white drawing paper, blue tracing paper, or coordinate paper ruled in blue only. Gridlines that are to show in the final printed figure should be inked in black. Letters, numerals, data points, and other marks should be made neatly and of such size that the smallest will be readable when the figure is reduced to one- or two-column size (final width 68 and 176 mm, respectively). Avoid wasted space in illustrations; several curves may often be shown clearly on the same graph, for example. The word "top," the figure number, and the author's name should be lightly written in pencil on the back of each illustration. Do not paperclip illustrations together. Each illustration must have a caption, typed double-spaced on a separate sheet, that makes it intelligible by itself. Number in Arabic numerals.
A reasonable financial allowance is made to each paper for illustrations and tabular composition. If this allowance is exceeded, special arrangements must be made with the Executive Editor.
Tables
Each table should be on a separate page and numbered consecutively with Arabic numerals in order of mention in the text. Each table should have a descriptive heading that makes it intelligible without reference to the text; footnotes to the table should appear on the same sheet as the table. Each column should have a heading with clearly defined units. Lengthy tabulations are expensive to set; unless essential, they should be avoided and replaced by statistical statements. Figures and tables should not be used to illustrate the same data; use whichever is clearer, or omit entirely if the information can be stated concisely in the text.

Text Footnotes
Use footnotes sparingly, for auxiliary or explanatory material that cannot be incorporated into the text without seriously disrupting the train of thought. Indicate the position of a footnote in the text by a superscript Arabic numeral. Text footnotes should be typed on a separate sheet of paper, with the appropriate number and page number for each. On the first page of each published article, the following information will also be printed routinely as footnotes: laboratory affiliation(s) of the author(s) and the dates on which the manuscript was received and accepted for publication. Footnotes to tables are independent of other footnotes, and should be indicated by superscript lower-case italic letters in alphabetical order, reading across the table.

Description of Analytical Methods and Results
Manuscripts dealing with the development and evaluation of performance of methods and instruments should discuss chemical sensitivity and specificity, detection limits, precision, accuracy, recovery, interference, comparison with other analytical methods, and normal range, and when appropriate should include clinical data. The paper should document the analytical advantages of the new or modified method over existing methods. Analytical methods should be identified as equilibrium or kinetic methods; use of the term "endpoint" is discouraged, because current usage is not consistent with formal definitions of the term.

Standard curves and linearity: Data for these studies should be subjected to linear-regression analysis (if a linear response is obtained) and should include the slope, intercept, standard error of estimate (standard deviation about the regression line), and the standard deviations of the slope and intercept. Standard deviations of repeated points may be included. In preparing radioimmunoassay standard curves, authors may use any objective, statistically valid method, but should specify the method used (see, e.g., 6).

Precision: Studies must include estimates of "within-run" and "total" standard deviations. Each should be determined at low, normal, and above-normal concentrations with use of specimens that are in an appropriate biological fluid matrix. The most nearly accurate method of estimating both within-run and total standard deviation is the analysis of variance experiment described in NCCLS EP5 (7), which calls for two replicates per specimen per run and two runs per day for 20 days. This permits separate estimation of between-day and between-run, within-day standard deviations, as well as within-run and total standard deviations. Acceptable alternatives that include only one run per day are also discussed in the cited document.

Accuracy: (a) Analytical recovery studies involve analyses after known amounts of analyte are added to the biological fluid on which the determination will be performed. Samples from patients with grossly abnormal and pathological conditions should be included, as well as samples from healthy individuals. Percentage recovery should be calculated as (amount found of added/amount added) × 100.

(b) Interference studies should be performed to assess the
effects of other substances on the analyte to be determined. Substances tested at extremely high concentrations should include common serum components, such as lipids, hemoglobin, bilirubin, and other endogenous substances that may interfere. Exogenous materials such as commonly used or commonly co-administered drugs that might interfere with the determination should also be tested for interferences.

(c) Comparison-of-methods studies should compare results by the new or proposed method with those by a reference-quality method or other generally accepted analytical method for which the performance is documented. It is desirable to test 100 to 200 different samples from patients who have been selected to include a wide variety of pathological conditions and a concentration range that includes values (normal and abnormal) likely to be encountered in routine application.

These comparison data should be subjected to appropriate statistical analysis. Information is available on the application and interpretation of statistics in method-comparison studies (8–11). Authors should choose parametric or non-parametric statistics as appropriate (8) and should specify the statistical methods used. Values for t (Student's t-test), F (F-test), and r (correlation coefficient) are often difficult to interpret (9), as are their nonparametric counterparts. The decision on acceptability requires that observed errors be judged in the context of medical limits for allowable analytical error (10). Regression analysis is often most useful for estimating the differences or errors between two analytical methods, because the errors can be calculated at any medically important concentration within the range studied; furthermore, the slope and intercept may give some indication of the type of systematic error, which may aid in reducing the analytical errors (9). Because the reliability of the estimates of slope and intercept can be affected by nonlinearity in the data set, outliers, a narrow range of data, and variability of the comparison method, samples preferably should cover the complete range of concentrations that might be encountered, and standard deviations of slope and intercept should be given.

Reference interval (normal range): Depending on the conclusions of the accuracy studies, modification of the existing normal range may be indicated. Description of the normal-range study should include details about sampling; selection of subjects, including their number, age, and sex distribution; the statistical method for summarizing the results (11); and other factors that would influence the values obtained.

Chromatograms: Chromatograms from gas–liquid and liquid chromatography should usually be presented so readers can see the efficiency of the separation, calculate the number of theoretical plates, and observe the resolution from interfering substances in the matrix. The exact source of columns and packing materials, and their handling, must be described. The solvent sources and solvent compositions must be accurately given, and the history of experience with each column must be described. Migration should be expressed in terms of Rf (or retention times for columns). Temperature conditions should be stated. Solvents or carriers and their order of use should be described in detail. Similar information should be included for electrophoresis.

Enzyme activities: The effects of certain factors are customarily described in methods for determination of catalytic activity: temperature, pH, substrate concentration, enzyme concentration, order of reaction, inhibitors, activators, buffers, chelators, and the like. Representative calculations deriving the results must usually be shown, because pure enzymes are seldom obtainable for standardization of the method. Enzymes must be identified by their Enzyme Commission number (12) when first mentioned.

References

Reprints of papers published in Clinical Chemistry can be obtained at any time and in any quantity exceeding 100.

Statement of Interest

The journal expects authors to disclose any commercial associations that might pose a conflict of interest in connection with the submitted article. All funding sources supporting the work should be routinely acknowledged, as should all institutional or corporate affiliations of the authors. Other kinds of associations, such as consultancies, stock ownership or other equity interests, or patent-licensing arrangements, should be disclosed to the Executive Editor in a covering letter at the time of submission. Such information will be held in confidence while the paper is under review and will not influence the editorial decision. If the manuscript is accepted, the Editor will discuss with the authors how best to disclose the relevant information. Questions about this policy should be directed to the Editor.