However, clinicians and laboratorians must be extremely careful in the interpretation of creatinine clearance measurements performed by the enzymatic creatinine methods. Plasma creatinine concentrations are precisely measured by all four methods, but the utility of enzymatically derived clearances needs further investigation in relationship to the established Jaffé methods currently used worldwide. Although our observations are not definitive, they reinforce the need to establish normal reference intervals for plasma creatinine and for creatinine clearance measurements.

We thank Professor Esther Freier, Department of Laboratory Medicine and Pathology, University of Minnesota, for performing creatinine measurements by the BMD method for this study.

References

Corrections

p 1628, Fig. 6: Although faint, there is a band at the origin in lane g.

p 1656: The accompanying figure should be substituted for the Figure 2 shown on page 1656, a figure that was to have been deleted. The figure legend is unchanged.

p 1705: The second paragraph in the left column should replace the third paragraph of the Discussion. Thus the authors find it "likely that the principal alkali-labile oxalate precursors in urine are ascorbate and some of its metabolites"

p 1927: The name of the author of a book review, Robert Rej, was omitted.

p 2014: On line 7, the 95 percentile interval for plasma ammonia should be 16–53 µmol/L, as correctly stated in the Abstract.