Simultaneous Determination of Total IgE and Allergen-Specific IgE in Serum by the MAST Chemiluminescent Assay System

Christopher R. Brown, Keith W. Higgins,1 Kelly Frazer,2 Linda K. Schoetz, John W. Dyminski,3 Vincent A. Marinkovich, Steven P. Miller, and John F. Burd

We have developed a chemiluminescent immunoenzymometric system. The first commercial application of this chemiluminescent assay (CLA) is the measurement of total IgE and allergen-specific IgE in human serum. The CLA system is a second-generation adaptation of the MAST RIA allergy profiling system. The MAST CLA system assay protocol consists of three steps: overnight incubation of serum, a 4-h incubation with enzyme-labeled antibody, and a 30-min chemiluminescent reaction, which produces a visible image (immunograph) on high-speed Polaroid® instant film. The densities of the bands produced on the film are quantified with an inexpensive microprocessor-controlled infrared transmittance densitometer. The novel luminogenic substrates used yield a constant light output for over 2 h with an intensity at least 10-fold greater than that of commercial chemiluminescent reagents. The MAST CLA system exhibits sensitivity, specificity, and precision equal to that of the MAST RIA system (r = 0.96 for 40 serum samples analyzed with 25 allergens). As many as 35 different allergens per sample can be quantified in a single assay. The MAST CLA system requires no standard curve or volume-dependent pipetting steps, incorporates both positive and negative controls for each sample, and quantifies allergen-specific IgE at picomolar concentrations.

Additional Keyphrases: chemiluminescent immunoassay - allergy - autoimmunography - immunograph - densitometry

The diagnosis of allergy involves a patient history, physical examination, and confirmatory diagnostic testing to identify whether the patient’s symptoms are of allergic or nonallergic origin. If allergy is responsible for the symptoms, then the allergens responsible must be identified. Possibly the most relevant type of diagnostic testing for allergy is provocation. However, this type of testing can be dangerous for the patient, is certainly unpleasant, and cannot be performed for multiple allergens at one sitting. Skin testing continues to be the most widely used diagnostic test for allergy, even though it has a high percentage of false positives, is subject to large differences in technique and interpretation, and cannot be used on patients taking certain drugs or patients with skin problems (1-4). In vitro techniques for allergy testing have improved since the specific immunoglobulin responsible for immediate allergic hypersensitivity was discovered and characterized as IgE in the mid-1960s by Iwasaka et al. (5) and Johansson and Bennich (6). The first in vitro allergen-specific immunoglobulin assay was described by Millman et al. in 1964 (7). Later, Wide et al. (8) described the radioallergosorbent test (RAST), an immunometric “sandwich”-type immunoassay in which excess amounts of allergen are attached to a solid-phase. After the patient’s serum is incubated with the solid-phase allergen, the amount of allergen-specific IgE in the serum is quantified by incubation with labeled anti-IgE. More recently, the radioactive label used in earlier RAST assays has been replaced with enzyme labels that generate color (9, 10) or fluorescence (11); these offer the convenience, stability, and nonhazardous features associated with nonisotopic assay methods.

We previously reported a unique RIA system for measuring allergen-specific (12) and total IgE (13) in which cellulose thread was the solid-phase matrix in a compact plastic test chamber. The MAST RIA Allergy Testing System allows up to 35 allergen-specific threads to be tested simultaneously along with a positive control, negative control, and a total IgE measurement in a single test with a very simple assay protocol. We have now extended this system to a nonisotopic version with a much shorter total assay time. In the MAST chemiluminescent assay system, enzyme-labeled anti-IgE interacts with substrates that generate luminescence upon enzymatic reaction. The light produced is photographed with Polaroid® high-speed film and quantified with an inexpensive infrared transmittance densitometer.

Materials and Methods

Apparatus

MASTpette test chamber. The MASTpette test chamber for the chemiluminescent assay system consists of a black silk-screened coverslip along with antigen-coated cellulose threads bonded in the plastic chamber shown schematically in Figure 1. Each chamber contains 38 cellulose threads for the simultaneous measurement of total IgE, as many as 35 clinically relevant allergen groups, and positive and negative controls. The total IgE test result provides an overall indication of the patient’s allergic potential (manuscript in preparation) and is especially useful if all specific allergen results are negative. The positive control thread has human IgE covalently attached to assure the quality of the labeled antibody and film used to quantify the results. The negative control thread, devoid of allergen, measures the degree of nonspecific binding associated with each patient’s sample and compensates for film variations. Concentrations of the patient’s specific and total IgE minus the nonspecific binding are automatically calculated by the densitometer.

Phocacassette. Because the MAST CLA system produces luminescence directly, we modified the photocassette design of the MAST RIA system by removing the phosphor screen. A permanent photographic print (immunograph) is produced by exposing Polaroid Type 57 (high-speed) film to the test chambers (the photocassette will accommodate up to five MASTpette test chambers per exposure). Light emitted

1 Present address: Chiron Inc., 4560 Horton, Emeryville, CA 94608.
2 Present address: Department of Physiology, University of California, San Francisco, San Francisco, CA 94143.
3 Present address: Genentech Inc., 460 Point San Bruno Blvd., South San Francisco, CA 94080.
Received April 11, 1985; accepted June 12, 1985.

1500 CLINICAL CHEMISTRY, Vol. 31, No. 9, 1985
provide net voltage results. Samples with an abnormally high background are indicated with a single asterisk. After the net voltage is determined, the densitometer converts the reading to a MAST class.

Other apparatus. Other useful apparatus, peripheral to the equipment necessary for the chemiluminescent test system, are a workstation, a wash buffer dispenser, a film slitter, and an allergy test record, described elsewhere (12).

The MAST allergy test record is used to present results to the patient in an easily understood fashion: it lists the allergens present on the test chamber threads, has a guide for interpreting MAST classes, and provides a convenient way to store results in the patient's chart or file.

Materials

Allergens. Allergens were obtained from Hollister-Stier, Inc., Spokane, WA; Sharp and Sharp, Inc., Everett, WA; and Greer Laboratories, Inc., Lenoir, NC.

Sera. Blood samples were usually collected in Vacutainer Serum Separator Tubes (Becton Dickinson, Rutherford, NJ) and allowed to clot for 1 to 2 h at room temperature. Serum was removed by centrifugation and either used fresh or stored at -70 °C until needed.

Enzyme-labeled antibody. Affinity-purified goat anti-human myeloma IgE was labeled with horseradish peroxidase (EC 1.11.1.7) at an enzyme/antibody protein molar ratio of 4; we used the two-step method of Nakane and Kawaoi (14). The antibody concentrate consists of 20 mg of enzyme-labeled antibody in, per liter, 10 mmol of phosphate (pH 7.2), 150 mmol of sodium chloride, and 0.1 g of thimerosal, plus a protein stabilizer.

Antibody diluent buffer. Antibody was diluted to its working concentration of 400 μg/L in the antibody diluent buffer of, per liter, 10 mmol of phosphate (pH 7.2), 150 mmol of sodium chloride, and 0.1 g of thimerosal, plus additional protein stabilizers.

Enzyme substrate reagents (photoreagents). Photoreagent A: a cyclic diacylhydrazide compound described elsewhere (15) in 45.5 mmol/L NaOH. Photoreagent B: 50 mmol/L borate buffer, pH 9.4. Photoreagent C: 4 mmol/L hydrogen peroxide in phosphate-buffered saline (10 mmol/L phosphate, 150 mmol/L NaCl, pH 7.0). Photoreagent D: A mixture of erythrosine, Allura Red AC, and tartrazine dyes to absorb strongly (A = 1.05) from 418 to 520 nm in distilled, de-ionized water (15). Just before use, equal volumes of all photoreagents are mixed together.

Wash buffer. Per liter, 10 mmol phosphate buffer (pH 7.2), containing 150 mmol of sodium chloride, 1.0 mL of Tween 20 surfactant, and 0.1 g of thimerosal.

Other materials. For the chemiluminescent assays and RIA correlation studies we used the MAST RIA Allergy Profiling reagents (MAST ImmunoSystems, Inc., Mountain View, CA), sealing plugs, 3-mL syringes, and Polaroid Type 57 film. Luminol was obtained from Sigma Chemical Co., St. Louis, MO.

Procedures

MAST CLA assay. Attach a 3-mL syringe to the top port of the MASTpette test chamber and draw about 1.3 mL of the patient’s serum up into the test chamber. Seal the bottom and top ports with rubber plugs, and incubate the chamber overnight (16–24 h) at room temperature; then remove the plugs and allow the serum to drain from the test chamber. Wash the chamber three times with 10 mL of wash buffer, voiding the test chamber of wash buffer between successive washes. Then draw enzyme-labeled antibody (1.3 mL per test chamber) up into the test chamber, seal the bottom and top ports again, and after a 4-h
incubation drain and wash the test chamber as above. Mix
the four photoreagents in equal proportions (0.5 mL of each
reagent per test chamber), and draw the photoreagent
mixture (1.3 mL) into the test chambers. Seal the test
chambers with plugs, and load them into the lid of the
photocassette. Insert the film into the lower member of the
photocassette and fasten both parts of the photocassette
together. To initiate the film exposure, withdraw the film
evelope from the photocassette and turn the control knob
down fully to position the test chambers in contact with
the film negative. Let the exposure proceed for 30 min at
room temperature, and then turn the control knob up to raise the
test chambers away from the negative. Immediately rein-
sert the film envelope into the photocassette and set the
control level on the photocassette to the process position.
Pull out the film packet, let the film process for 30 s, then
print-coat and dry the positive print.

Using the film slitter, cut the film print into five individual
imunographs and use the reader card to align the
bands on each immunograph for presentation to the densi-
tometer, placing the top band (positive control thread)
within the top window, marked "POS." When the reader
card is fed into the densitometer, the instrument automati-
cally records the gross voltage readings for the positive and
negative bands and net voltage and class readings for the
total IgE and allergen-specific bands. Concentration of IgE
is expressed in MAST Class units or net voltages, as defined
in the MAST product inserts.

Comparison luminescence measurements. For comparison
we monitored luminescence with the photomultiplier por-
tion and circuitry of an Ames fluorocolorimeter (Miles Labs
Inc., Elkhart, IN).

Results
Luminescence Measurements
Our first experimentation with commercially available
luminoi showed the chemiluminescent assay to be less
sensitive than the MAST RIA. Subsequent modification and
experimentation led to the discovery of an improved cyclic
diacylhydrazide compound with greater luminescence yield
in the MAST CLA system (15). Maximum emission for both
luminoi and the MAST luminescence reagent was at 450
nm. The luminescence yield for equimolar concentrations of
luminoi and MAST CLA luminescence reagent in solution
are shown in Figure 3. The MAST luminescence reagent
yielded over 10-fold the emission of luminoi, and its lu-
minescence output was constant for up to 2 h. Results under
assay conditions with Polaroid film were similar: when new
film packets were placed in the photocassette at sequential
30-min intervals, the response from the threads was con-
stant for up to 2 h (Figure 4).

Assay Optimization

Serum incubation time. A patient's serum was incubated
at room temperature for various times in MASTpette test
chambers. After completing the subsequent assay steps as
described above, we found that, although sufficient intensity
for determining the final class of allergen-specific IgE is
achieved after 6–8 h, a longer incubation results in slightly
greater sensitivity (Figure 5, top). We recommend overnight
incubation for both convenience and maximum sensitivity.

Antibody incubation time. Figure 5 (middle) shows typical
results for selected MAST classes when antibody incubation
times were varied from 1 to 5 h. Optimal sensitivity was
achieved with a 4-h incubation.

Exposure time. Light emitted from the reaction of the
enzyme-labeled antibody with the photoreagent mixture
exposes the film; thus a white band on the resulting
photograph corresponds to each positive reaction. The tran-
mittance of each band is measured with the MAST densi-
tometer. The degree of transmittance (voltage) is directly
proportional to the allergen-specific IgE and the total IgE
concentration in the patient's serum. Figure 5 (bottom)
illustrates the effect of varying the time of photographic
exposure. Threads with high amounts of total IgE or aller-
gen-specific IgE reach their maximum transmittance rela-
tively quickly, and the transmittance plateaus with contin-
ued exposure; threads with low amounts of antigen have a
lower rate of increase in transmittance. We chose an ex-
posure time of 30 min to correlate the MAST CLA test
response with that of the current MAST RIA system, given
its demonstrated clinical utility and assay sensitivity (12,
16–18).

The negative control compensates for imprecision in the
timing of the exposure and eliminates false positives if the
film is exposed for longer than 30 min.
Suppression of background luminescence. A dye reagent that absorbs between 400 and 600 nm was incorporated in the luminescent reagent to suppress "cross talk" luminescence emitted between the threads in the MASTpette test chamber. The incorporation of the dye is essential to eliminating false-positive results on threads located next to strongly positive threads (15).

Precision. Within-run variation is illustrated in Figure 6 (top). Five replicates of four serum samples were assayed on the same day with the same reagents. The mean CV of the responses of all the allergen threads, calculated as net transmittance voltage, was 13.9%.

Between-run variation (Figure 6, bottom) was determined by running five replicates of four serum samples on four different days. The CV of the responses of all the allergen threads, calculated as net transmittance voltage, was 15.9%.

Correlation study. We analyzed a group of 40 patients' serum samples with various concentrations of allergen-specific IgE by both the MAST RIA and MAST CLA systems. The sera were tested against 25 different allergens, including materials from trees, grasses, weeds, molds and animal danders. The classes of allergen-specific IgE correlated identically in 77% (601/78) of the cases, and 97%
(754/778) of the results were within one class difference (Figure 7). The correlation coefficient was 0.96, the y-intercept was 0.09, and the slope was 0.96 (n = 778).

Discussion

The MAST RIA technology has several advantages over existing RAST tests as an in vitro method for determining IgE responses to individual allergens. The ability to miniaturize RAST-type testing for a panel of allergens plus total IgE offers a clear improvement in the determination of the allergic or nonallergic nature of a patient’s symptoms. Furthermore, the MAST RIA has shown good correlation with other RAST assay results (16, 17) and also with skin-prick testing (18). The chemiluminescent assay system (MAST CLA) we have described produces results that compare well with those of the clinically proven MAST RIA but also offers several technical and procedural improvements.

The MAST CLA reagents provide a much greater intensity of light emission than do other commercially available chemiluminescent reagents. Combined with a prolonged (2 h) constant light emission, this provides flexibility to the system; i.e., the chemiluminescent reaction may be initiated several minutes before exposure to film, and the sensitivity of the assay can be increased by increasing exposure times. Unlike the MAST RIA system, which requires an overnight film exposure at refrigerated temperatures, in the MAST CLA system this takes 30 min at room temperature. For intercomparability of results, the chemiluminescent assay response has been tempered to equal that of the MAST RIA system (r = 0.96). The assay time has been considerably reduced; results can be obtained within 24 h, with little “hands-on” time. And finally, the CLA system not only alleviates the precautions necessary for handling isotopic materials but also has the advantage of long-term reagent stability (at least six months). The chemiluminescent system retains the quality-control features of internal standards, to assess and compensate for non-specific binding in a patient’s serum sample, which minimizes the chance of falsely increased results inherent in other RAST-type assays.

Like other nonisotopic immunoassays, chemiluminescent assays are becoming an increasingly attractive alternative to radiolabels in new immunoassay methods (19, 20). Current methods for measuring luminescence reactions typically record peak light emissions or integrate the total light output (21, 22). Immunoassays with luminescent tracers generally require instrumentation to facilitate the simultaneous initiation of the luminescent reaction and the measurement of the light emission in very short time frames (generally between 0 and 60 s, more commonly between 0 and 20 s). Luminescent immunoassays for analytes of clinical interest have been described (23–26); however, efforts toward a clinically feasible chemiluminescence reagent and instrument system package have not heretofore been proven clinically feasible.

The MAST CLA technology is a simple and practical approach for in vitro measurement in the diagnosis of allergy. The MAST CLA Allergy System is the first of several planned clinical diagnostic products that will involve the MAST chemiluminescence technology.

References


