Table 1. Comparison of Gas-chromatographic (GLC) Results in Those Cases of Interference Seen in the Dual-Wavelength (HPLC) Method

<table>
<thead>
<tr>
<th>Apparent concn. in serum, mg/liter</th>
<th>HPLC</th>
<th>GLC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>254 nm</td>
<td>200 nm</td>
</tr>
<tr>
<td>Phenyltoin</td>
<td>29.0</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>56.0</td>
<td>7.5</td>
</tr>
<tr>
<td>phosphodiester</td>
<td>22.5</td>
<td>5.0</td>
</tr>
<tr>
<td>phenazone</td>
<td>15.5</td>
<td>4.5</td>
</tr>
<tr>
<td>pentobarbital</td>
<td>46.5</td>
<td>4.5</td>
</tr>
<tr>
<td>phosphodiester</td>
<td>38.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>18.5</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>85.0</td>
<td>10.0</td>
</tr>
<tr>
<td>phosphodiester</td>
<td>27.5</td>
<td>15.0</td>
</tr>
<tr>
<td>alkylphosphodiester</td>
<td>52.6</td>
<td>5.0</td>
</tr>
</tbody>
</table>


References


Steven J. Soldin
J. Gilbert Hill

Service Division
Department of Biochemistry
The Hospital For Sick Children
555 University Ave.
Toronto, Ontario M5G 1X8, Canada

Metal Vial Closures and Hepatitis

To the Editor:
The danger of exposure and accidental infection from hepatitis virus in control products has been well documented. The danger is augmented by the fact that laboratory personnel are likely to overlook the human origins of some products and treat them as harmless reagents, and is further enhanced, in my view, by the very nature of the packaging. All who cut away the aluminum retaining ring which secures the rubber cap risk frequent cuts, sometimes frank, often, I suspect, micro. The same nicked finger will, in a moment, lift the cap and contact possible virus-containing dried serum.

During the past year I contacted several prominent control manufacturers and suggested substituting a plastic closure for metal in view of the potential hazard contributed by the latter. Two totally ignored my letter and one complained of technical difficulty in using a non-metal seal.
The AACC has for some time urged that legitimate product criticism be directed to the USP's Product Problem Reporting Program. Perhaps collective complaint would be effective.

Harold Steinberg
Boston Medical Laboratory, Inc.
19 Bay State Road
Boston, Mass. 02215

Detection and Correction of Falsely Elevated Lipase Values as Measured Nephelometrically

To the Editor:
Recently we began to use the Coleman Model 91 Amylase–Lipase Analyzer (Coleman Instruments Division, Perkin-Elmer Corp., Oak Brook, Ill. 60521) for routine lipase analysis. This instrument is a nephelometer that calculates lipase activity from the rate of decrease in light scattering of a mixture of specimen and a lipase reagent, a buffered suspension of olive oil stabilized with sodium deoxycholate. The lipase reagent supplied by the Perkin-Elmer Corp. gave variable performance from lot to lot, consequently we prepared the reagent in our laboratory according to the manufacturer's instructions accompanying the Perkin-Elmer reagent, except that our reagent contained 3 g of sodium deoxycholate per liter and pure rather than denatured ethanol was used in its preparation. The chemicals used were trio(hydroxymethyl)methylamine hydrochloride (Trizma®-9.0, Sigma Chemical Co., St. Louis, Mo. 63178), sodium deoxycholate, A grade (Calbiochem, San Diego, Calif. 92112), absolute ethanol (U.S. Industrial Chemicals Co., Tuscola, Ill. 61563), sorbic acid (Sigma), and olive oil (Fisher Scientific Co., Pittsburgh, Pa. 15219). Before use the olive oil was treated with alumina to decrease its free fatty acid concentration to <0.5 mmol/liter.

During the initial check-out studies with the instrument, occasional specimens were found to have abnormally high values for serum lipase by the nephelometric method, yet normal values for both amylase with the instrument and for lipase by a titrimetric method (1). This extra nephelometric lipase activity, which is apparently not of pancreatic origin, is hereinafter

1 Only earlier (prior to July 1976) lots of Perkin-Elmer reagent were tried.