Skip to main content

Main menu

  • Home
  • About
    • Clinical Chemistry
    • Editorial Board
    • Most Read
    • Most Cited
    • Alerts
    • CE Credits
  • Articles
    • Current Issue
    • Early Release
    • Future Table of Contents
    • Archive
    • Browse by Subject
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
    • Permissions & Reprints
  • Resources
    • AACC Learning Lab
    • Clinical Chemistry Trainee Council
    • Clinical Case Studies
    • Clinical Chemistry Guide to Scientific Writing
    • Clinical Chemistry Guide to Manuscript Review
    • Journal Club
    • Podcasts
    • Q&A
    • Translated Content
  • Abstracts
  • Submit
  • Contact
  • Other Publications
    • The Journal of Applied Laboratory Medicine

User menu

  • Subscribe
  • My alerts
  • Log in

Search

  • Advanced search
Clinical Chemistry
  • Other Publications
    • The Journal of Applied Laboratory Medicine
  • Subscribe
  • My alerts
  • Log in
Clinical Chemistry

Advanced Search

  • Home
  • About
    • Clinical Chemistry
    • Editorial Board
    • Most Read
    • Most Cited
    • Alerts
    • CE Credits
  • Articles
    • Current Issue
    • Early Release
    • Future Table of Contents
    • Archive
    • Browse by Subject
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
    • Permissions & Reprints
  • Resources
    • AACC Learning Lab
    • Clinical Chemistry Trainee Council
    • Clinical Case Studies
    • Clinical Chemistry Guide to Scientific Writing
    • Clinical Chemistry Guide to Manuscript Review
    • Journal Club
    • Podcasts
    • Q&A
    • Translated Content
  • Abstracts
  • Submit
  • Contact
Abstract

Artificial neural networks in diagnosis of thyroid function from in vitro laboratory tests.

P K Sharpe, H E Solberg, K Rootwelt, M Yearworth
Published November 1993
P K Sharpe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H E Solberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Rootwelt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M Yearworth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

We studied the potential benefit of using artificial neural networks (ANNs) for the diagnosis of thyroid function. We examined two types of ANN architecture and assessed their robustness in the face of diagnostic noise. The thyroid function data we used had previously been studied by multivariate statistical methods and a variety of pattern-recognition techniques. The total data set comprised 392 cases that had been classified according to both thyroid function and 19 clinical categories. All cases had a complete set of results of six laboratory tests (total thyroxine, free thyroxine, triiodothyronine, triiodothyronine uptake test, thyrotropin, and thyroxine-binding globulin). This data set was divided into subsets used for training the networks and for testing their performance; the test subsets contained various proportions of cases with diagnostic noise to mimic real-life diagnostic situations. The networks studied were a multilayer perceptron trained by back-propagation, and a learning vector quantization network. The training data subsets were selected according to two strategies: either training data based on cases with extreme values for the laboratory tests with randomly selected nonextreme cases added, or training cases from very pure functional groups. Both network architectures were efficient irrespective of the type of training data. The correct allocation of cases in test data subsets was 96.4-99.7% when extreme values were used for training and 92.7-98.8% when only pure cases were used.

  • © 1993 The American Association for Clinical Chemistry
PreviousNext
Back to top

In this issue

Vol. 39, Issue 11
November 1993
  • Table of Contents
  • Index by author
  • Table of Contents (PDF)
  • Ed Board (PDF)
  • Front Matter (PDF)
Share
Artificial neural networks in diagnosis of thyroid function from in vitro laboratory tests.
P K Sharpe, H E Solberg, K Rootwelt, M Yearworth
Clinical Chemistry Nov 1993, 39 (11) 2248-2253;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Artificial neural networks in diagnosis of thyroid function from in vitro laboratory tests.
P K Sharpe, H E Solberg, K Rootwelt, M Yearworth
Clinical Chemistry Nov 1993, 39 (11) 2248-2253;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

Similar Articles

Options

  • Home
  • About
  • Articles
  • Information for Authors
  • Resources
  • Abstracts
  • Submit
  • Contact
  • RSS

Other Publications

  • The Journal of Applied Laboratory Medicine
Footer logo

© 2019 American Association for Clinical Chemistry

Powered by HighWire